83 research outputs found

    Glows Co Automated Chemical Etching Machine for Fiber Optic Cable

    Get PDF
    This report summarizes the conceptualization and development of an automated machine designed for a fiber optic cable stripping process used by Lumentum LLC. This process is currently manually operated by Lumentum’s technicians and involves unavoidable handling of corrosive chemicals. To increase technician safety, the process will be automated to reduce chemical - operator interactions. Improving safety conditions for technicians is the primary motivation for automating this process. Automation will also decrease process variation and increase product quality. GLOWS CO was tasked with creating this automated solution, leading to the design of the Automatic Chemical Etching Machine (or A-CHEM) for the fiber etching process for Lumentum LLC. At the conclusion of this project, the A-CHEM successfully fulfilled all of the requirements set out by Lumentum, namely improving technician safety and making the process more ergonomic

    Constructing and evaluating a continent‐wide migratory songbird network across the annual cycle

    Get PDF
    Determining how migratory animals are spatially connected between breeding and non‐breeding periods is essential for predicting the effects of environmental change and for developing optimal conservation strategies. Yet, despite recent advances in tracking technology, we lack comprehensive information on the spatial structure of migratory networks across a species’ range, particularly for small‐bodied, long‐distance migratory animals. We constructed a migratory network for a songbird and used network‐based metrics to characterize the spatial structure and prioritize regions for conservation. The network was constructed using year‐round movements derived from 133 archival light‐level geolocators attached to Tree Swallows (Tachycineta bicolor) originating from 12 breeding sites across their North American breeding range. From these breeding sites, we identified 10 autumn stopover nodes (regions) in North America, 13 non‐breeding nodes located around the Gulf of Mexico, Mexico, Florida, and the Caribbean, and 136 unique edges (migratory routes) connecting nodes. We found strong migratory connectivity between breeding and autumn stopover sites and moderate migratory connectivity between the breeding and non‐breeding sites. We identified three distinct “communities” of nodes that corresponded to western, central, and eastern North American flyways. Several regions were important for maintaining network connectivity, with South Florida and Louisiana as the top ranked non‐breeding nodes and the Midwest as the top ranked stopover node. We show that migratory songbird networks can have both a high degree of mixing between seasons yet still show regionally distinct migratory flyways. Such information will be crucial for accurately predicting factors that limit and regulate migratory songbirds throughout the annual cycle. Our study highlights how network‐based metrics can be valuable for identifying overall network structure and prioritizing specific regions within a network for conserving a wide variety of migratory animals

    Spatiotemporal Patterns in Nest Box Occupancy by Tree Swallows Across North America

    Get PDF
    Data from the North American Breeding Bird Survey (BBS) suggest that populations of aerial insectivorous birds are declining, particularly in northeastern regions of the continent, and particularly since the mid-1980s. Species that use nest boxes, such as Tree Swallows (Tachycineta bicolor), may provide researchers with large data sets that better reveal finer-scale geographical patterns in population trends. We analyzed trends in occupancy rates for ca. 40,000 Tree Swallow nest-box-years from 16 sites across North America. The earliest site has been studied intensively since 1969 and the latest site since 2004. Nest box occupancy rates declined significantly at five of six (83%) sites east of -78° W longitude, whereas occupancy rates increased significantly at four of ten sites (40%) west of -78° W longitude. Decreasing box occupancy trends from the northeast were broadly consistent with aspects of a previous analysis of BBS data for Tree Swallows, but our finding of instances of increases in other parts of the continent are novel. Several questions remain, particularly with respect to causes of these broad-scale geographic changes in population densities of Tree Swallows. The broad geographic patterns are consistent with a hypothesis of widespread changes in climate on wintering, migratory, or breeding areas that in turn may differentially affect populations of aerial insects, but other explanations are possible. It is also unclear whether these changes in occupancy rates reflect an increase or decrease in overall populations of Tree Swallows. Regardless, important conservation steps will be to unravel causes of changing populations of aerial insectivores in North America

    XMeis3 Is Necessary for Mesodermal Hox Gene Expression and Function

    Get PDF
    Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation

    Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Get PDF
    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network

    A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior

    Get PDF
    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions

    Perspectives on the use of transcriptomics to advance biofuels

    Get PDF
    As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.clos

    Schnee und Lawinen in den Schweizer Alpen. Hydrologisches Jahr 2013/14

    No full text
    ISSN:2296-3448ISSN:2296-345
    • 

    corecore