72 research outputs found

    The Lock-free kk-LSM Relaxed Priority Queue

    Full text link
    Priority queues are data structures which store keys in an ordered fashion to allow efficient access to the minimal (maximal) key. Priority queues are essential for many applications, e.g., Dijkstra's single-source shortest path algorithm, branch-and-bound algorithms, and prioritized schedulers. Efficient multiprocessor computing requires implementations of basic data structures that can be used concurrently and scale to large numbers of threads and cores. Lock-free data structures promise superior scalability by avoiding blocking synchronization primitives, but the \emph{delete-min} operation is an inherent scalability bottleneck in concurrent priority queues. Recent work has focused on alleviating this obstacle either by batching operations, or by relaxing the requirements to the \emph{delete-min} operation. We present a new, lock-free priority queue that relaxes the \emph{delete-min} operation so that it is allowed to delete \emph{any} of the ρ+1\rho+1 smallest keys, where ρ\rho is a runtime configurable parameter. Additionally, the behavior is identical to a non-relaxed priority queue for items added and removed by the same thread. The priority queue is built from a logarithmic number of sorted arrays in a way similar to log-structured merge-trees. We experimentally compare our priority queue to recent state-of-the-art lock-free priority queues, both with relaxed and non-relaxed semantics, showing high performance and good scalability of our approach.Comment: Short version as ACM PPoPP'15 poste

    Finiteness and children with specific language impairment: an exploratory study

    Get PDF
    Children with specific language impairment (SLI) are well known for their difficulties in mastering the inflectional paradigms; in the case of learning German they also have problems with the appropriate verb position, in particular with the verb in second position. This paper explores the possibilities of applying a broader concept of finiteness to data from children with SLI in order to put their deficits, or rather their skills, into a wider perspective. The concept, as developed by Klein (1998, 2000), suggests that finiteness is tied to the assertion that a certain state of affairs is valid with regard to some topic time; that is, finiteness relates the propositional content to the topic component. Its realization involves the interaction of various grammatical devices and, possibly, lexical means like temporal adverbs. Furthermore, in the acquisition of finiteness it has been found that scope particles play a major role in both first- and second-language learning. The purpose of this paper is to analyze to what extent three German-learning children with SLI have mastered these grammatical and lexical means and to pinpoint the phase in the development of finiteness they have reached. The data to be examined are mostly narrative and taken from conversations and experiments. It will be shown that each child chooses a different developmental path to come to grips with the interaction of these devices

    Toward the adaptation of component-based architectures by model transformation: behind smart user interfaces

    Get PDF
    Graphical user interfaces are not always developed for remaining static. There are GUIs with the need of implementing some variability mechanisms. Component-based GUIs are an ideal target for incorporating this kind of operations, because they can adapt their functionality at run-time when their structure is updated by adding or removing components or by modifying the relationships between them. Mashup user interfaces are a good example of this type of GUI, and they allow to combine services through the assembly of graphical components. We intend to adapt component based user interfaces for obtaining smart user interfaces. With this goal, our proposal attempts to adapt abstract component-based architectures by using model transformation. Our aim is to generate at run-time a dynamic model transformation, because the rules describing their behavior are not pre set but are selected from a repository depending on the context. The proposal describes an adaptation schema based on model transformation providing a solution to this dynamic transformation. Context information is processed to select at run-time a rule subset from a repository. Selected rules are used to generate, through a higher-order transformation, the dynamic model transformation. This approach has been tested through a case study which applies different repositories to the same architecture and context. Moreover, a web tool has been developed for validation and demonstration of its applicability. The novelty of our proposal arises from the adaptation schema that creates a non pre-set transformation, which enables the dynamic adaptation of component-based architectures

    Toward the adaptation of component-based architectures by model transformation: behind smart user interfaces

    Get PDF
    Graphical user interfaces are not always developed for remaining static. There are GUIs with the need of implementing some variability mechanisms. Component-based GUIs are an ideal target for incorporating this kind of operations, because they can adapt their functionality at run-time when their structure is updated by adding or removing components or by modifying the relationships between them. Mashup user interfaces are a good example of this type of GUI, and they allow to combine services through the assembly of graphical components. We intend to adapt component based user interfaces for obtaining smart user interfaces. With this goal, our proposal attempts to adapt abstract component-based architectures by using model transformation. Our aim is to generate at run-time a dynamic model transformation, because the rules describing their behavior are not pre set but are selected from a repository depending on the context. The proposal describes an adaptation schema based on model transformation providing a solution to this dynamic transformation. Context information is processed to select at run-time a rule subset from a repository. Selected rules are used to generate, through a higher-order transformation, the dynamic model transformation. This approach has been tested through a case study which applies different repositories to the same architecture and context. Moreover, a web tool has been developed for validation and demonstration of its applicability. The novelty of our proposal arises from the adaptation schema that creates a non pre-set transformation, which enables the dynamic adaptation of component-based architectures

    A cancer stem cell-like phenotype is associated with miR-10b expression in aggressive squamous cell carcinomas

    Get PDF
    Background Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. Methods MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. Results Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. Conclusion The discovery that miR-10b mediates an aspect of cancer stemness – that of enhanced tumor cell adhesion, known to facilitate metastatic colonization – provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore