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Founder mutations in specific populations are common in several Mendelian
disorders. They are shared by apparently unrelated families that inherited
them from a common ancestor that existed hundreds to thousands of years
ago. They have been proven to impact in molecular diagnostics strategies in
specific populations, where they can be assessed as the first screening step
and, if positive, avoid further expensive gene scanning. In Lynch syndrome
(LS), a dominantly inherited colorectal cancer disease, more than 50 founder
pathogenic mutations have been described so far in the mismatch repair
(MMR) genes (MLH1, MSH2, MSH6 and PMS2). We here provide a
comprehensive summary of the founder mutations found in the MMR genes
and an overview of their main characteristics. At a time when
high-throughput strategies are being introduced in the molecular diagnostics
of cancer, genetic testing for founder mutations can complement next
generation sequencing (NGS) technologies to most efficiently identify MMR
gene mutations in any given population. Additionally, special attention is
paid to MMR founder mutations with interesting anthropological
significance.
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The year 2013 marked the hundredth anniversary of the
first description of the cancer predisposing syndrome
initially known as cancer family syndrome, then hered-
itary non-polyposis colorectal cancer (HNPCC), and
finally Lynch Syndrome (LS) (1, 2). LS is the most
common cause of hereditary colorectal cancer (CRC),
showing an autosomal dominant inheritance pattern. In
addition to CRC, LS is characterized by an increased risk
of malignancies at certain extracolonic sites such as the
endometrium, ovary, stomach and small bowel, among
others (3). LS is caused by germline mutations in one of
the DNA mismatch repair (MMR) genes (MLH1, MSH2,
MSH6, and PMS2) (4–7). Constitutional epimutations,

characterized by soma-wide allele specific promoter
methylation and transcriptional silencing of MLH1 and
MSH2 (in the latter gene the transcriptional inactivation
is secondary to deletions in the neighboring EPCAM
gene), also trigger LS (8). Therefore, MMR deficiency is
the characteristic signature of LS tumors, and provides
us with two useful identification tools: microsatellite
instability (MSI) and loss of immunohistochemical
(IHC) staining of the MMR proteins (9). Systematic
tumor testing by MSI or IHC for all patients with CRC
(or CRC <70 years) and all patients with endometrial
cancer (EC) (or EC< 70 years) has been recommended
for the identification of patients with LS (10).
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As a result of ∼20 years of mutation analysis world-
wide, more than 1000 unique DNA variants have been
reported for each of the two major LS genes, MLH1 and
MSH2, plus several hundred for MSH6 and PMS2 (11).
When the individuals carrying the mutations are consid-
ered, the numbers are up to six times higher (11), imply-
ing that mutations tend to recur among the populations.
Two situations cause this recurrence of mutations among
unrelated families. On the one hand, in the so-called
recurrent mutations, sequence peculiarities can predis-
pose to an abnormal event at meiosis making a mutation
to arise repeatedly de novo (e.g. c.942+3A>T in MSH2)
(12, 13). On the other hand, the so-called founder muta-
tions arose in a single ancestor who subsequently passed
it on to succeeding generations. In order to prove that a
particular mutation is a founder, it is necessary to haplo-
type several markers [single nucleotide polymorphisms
(SNPs) or microsatellites] surrounding the mutation in
both carriers and non-carriers. If all carrier individuals
from the different families share a common haplotype
not frequently present in non-carriers, we can conclude
that most probably the mutation originated in a single
founder individual who spread the mutation. We expect
that the shorter the haplotype is, the older is the mutation.
By means of haplotyping cases and controls, we are also
able to estimate the age of founder mutations using one
of the several mathematical models described (14–21).
It is founder mutations that are the subject of this review.

Two alternative founder mutation-enrichment mecha-
nisms are believed to take place. Some founder mutations
could be positively selected through natural selection
because they carry an advantage (22). In other cases, in
isolated populations without significant genetic influx,
a new mutation can be enriched by genetic drift. In such
cases, the mutation could have appeared de novo or could
have come with the new founder individuals (founder
effect). Because genetic drift is enhanced in small
populations we find numerous examples of founder
mutations in relatively isolated regions (e.g. Quebec,
Newfoundland, Tenerife Island in Spain), countries (e.g.
Finland, Iceland, Netherlands) or ethnic groups such as
the Ashkenazi Jews (AJ). The tradition of intermarriage
among members of the same community during the last
millennium has led the AJ to a genetic isolation. Their
unusual high prevalence of disease-associated mutations
is consistent with the occurrence of several founding
events, repeated bottlenecks and dramatic expansions
among their history (23). Founder mutations have been
also discovered in large, genetically heterogeneous
populations (e.g. Europe, North-America).

Founder mutations can cause recessive patterns of
pathogenicity such as hemochromatosis (24), beta
thalassemia (25), cystic fibrosis (26) or xeroderma pig-
mentosum (27) among others. In dominant predisposing
diseases, founder mutations usually exist when the age
of onset of the disease is past the reproductive age, so
they are not eliminated because of reduced reproductive
fitness. This is the case of some cancer-predisposing
founder mutations that have been found, among others,
in BRCA1 and BRCA2 genes causing hereditary breast
and ovarian cancer syndrome (28), in CDKN2A gene

causing cutaneous malignant melanoma (29), or in the
MMR genes causing LS (30). In the latter case, more
than 50 founder mutations have been identified so far.
In this review, we aim to summarize all the published
founder mutations causing LS, paying special attention
to those with clinical or anthropological relevance.

MMR genes founder mutations in LS

Founder mutations in specific regions

At least 55 founder mutations causing LS have been
described so far (Tables 1–3). Although some mutations
have been seen in only a couple of unrelated families,
their single origin is supported by haplotype analysis
in cases and controls. In other cases, founder mutations
result to be very commonly found in specific countries or
areas, representing a very useful tool in regional genetic
screening of LS.

The most evident example of this, is probably the
case of the two MLH1 Finnish founder mutations
(c.454-1G>A and exon 16 deletion) that together,
account for ∼50% of LS families in Finland (31, 32).
In 1996, Moisio and colleagues performed genealogical
and haplotype analyses in families carrying these two
mutations, and not only were the first to describe the
existence of founder mutation in LS, but also were able
to estimate their age. Numerous other founders existing
in a relatively high proportion of LS families in partic-
ular areas have been described. In Spain, c.306+5G>A
and c.1865T>A MLH1 mutations represent the 17.6%
of MMR mutations in a specific series of families
residing in Catalonia (33). Around 25% of Danish
families that fulfill Amsterdam criteria are carriers of a
founder splicing mutation (c.1667+2_1667+8del7ins4)
in MLH1 gene (34, 35). Twenty percent of the LS
families identified in a series of Hong Kong, carry the
novel c.1452_1455del MSH2 mutation (36). In Portugal,
Pinheiro et al. described two founder mutations that
have been proved to be very prevalent: a large dele-
tion comprising exons 17–19 of the MLH1 gene and
exons 26–29 of the contiguous LRRFIP2 gene, and
the c.388_389del in MSH2 gene, represent 17% and
16% of LS-causing mutation in their series, respectively
(37, 38). Interestingly, the c.388_389del in MSH2 gene
appeared independently in families from Germany,
Scotland, England and Argentina, who did not share
the Portuguese haplotype, which led authors to the
conclusion that it may be a mutational hotspot within
the MSH2 gene, probably due to the existence of a
short repeat motif (TCTCTCTC) existing upstream of
the deletion (37). Similarly, in the province of New-
foundland (Canada) the c.942+3A>T MSH2 mutation
was found in 11 families. Although this mutation is
the most common recurrent mutation in MMR genes,
repeatedly arising de novo because of misalignment at
replication or recombination caused by the presence of
26 adenines (13, 39). Newfoundland carriers share a
common ancestral haplotype not present in carriers from
England, Italy, Hong Kong or Japan (12, 39). Therefore,
this recurrent mutation also appeared with a founder
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Table 1. Founder mutations in MLH1 gene

Mutation
Region/

population
Estimated
age (years)a Familiesb Haplotype Features Ref.

c.[−27C>A; c.85G>T]
(p.Ala29Ser)

Caucasians – 5 Yes Epigenetic silencing of
MLH1

(67)

c.112A>C (p.Asn38His) Netherlands – 6 Yes – (84)
c.306+5G>A Spain ∼1879 17 Yes Moderate penetrance (33)
c.392C>T (p.Ser131X) Republic of Macedonia – 3 Yes – (85)
c.454-1G>A Finland 125–525 5 Yes Highly frequent among

Finnish LS patients
(31, 32)

c.545+3A>G Italy
Quebec (Italian

ancestors)
Brazil

–
–
–

1
1
3

Yes
Yes
No

–
–
–

(70)
(70)
(72, 73)

c.589-2A>G US
Italy

∼450
–

10
3

Yes
Yes

1% of US LS families
–

(61)
(61)

c.731G>A (p.Gly244Asp) Italy – 3 Yes – (86)
c.793C>T (p.Arg265Cys) Taiwan – 13 Yes 20% of Amsterdam

families
(87)

c.1381A>T (p.Lys461X) North America – 3 Yes – (88)
c.1489dup (p.Arg497fs) Germany – 21 No – (89)
c.1558+1G>T (p.Val520fs) Italy – 2 Yes – (86)
c.1667+2_1667+8del7ins4 Denmark – 16 Yes ∼25% of Amsterdam

families
(34, 35)

c.1731G>A (p.=) Italy – 2 Yes Low risk for
extracolonic tumors

(86)

c.1758dup (p.Met587fs) Korea – 11 Yes – (90)
c.1831delAT (p.Ile611fs) Quebec (Italian

ancestors)
– 2 Yes – (70)

c.1865T>A (p.Leu622His) Spain – 12 Yes Moderate penetrance (33)
c.2142G>A (p.Trp714X) Swiss >200 1 Yes – (91)
c.2195_2198dup

(p.His733fs)
Quebec – 5 Yes – (92)

c.2252_2253del (p.Lys751fs) Italy ∼1550 11 Yes Increased risk of
pancreatic tumors

(82)

c.2269dup
(p.X757LeuextX33)

Italy
Argentina (Italian

ancestors)

–
–

4
1

Yes
No

–
–

(74)
(75)

Exon 11 deletion China – 2 Yes – (93)
Exon 12 deletion Quebec – 6 Yes – (92)
Exon 12–13 duplication Colombia – 2 No – (94)
Exon 16 deletion Finland 400–1075 14 Yes Highly frequent among

Finnish LS patients
(31, 32)

Exon 17–19 MLH1+exons
26–29 deletion LRRFIP2
deletion

Portugal ∼283 14 Yes 17% of LS mutation in
their series

(38)

aEstimation of the years that had passed since the most common ancestor appeared.
bApparently unrelated families described in the referred paper.

effect in Newfoundland, where it presents in 27% of LS
families (12).

The presence of a higher rate of founder mutations
in a population can distort the generally accepted, dis-
tribution of mutations among the MMR genes [32% in
MLH1, 38% in MSH2, 14% in MSH6, and 15% in PMS2
(40)]. For example, the existence in a Spanish series,
of two MSH2 founder deletions (exon 4–8 and exon 7)
doubles the rate of mutations in this gene compared to
MLH1 (41). Also, a substantial enrichment of Sardinians
was seen among the patients carrying MSH2 deletions

(or more precisely, exon 8 deletions) in an Italian series
(10/13 exon 8 deletions) (42). Further investigations
proved the founder effect of two exon 8 deletions,
carried by 7 and 2 of the 10 families, respectively. Each
deletion shared breakpoints and haplotype. Given the
presence of these two founder mutations, 50% of LS Sar-
dinian families carry a mutation in the MSH2 gene (42).
In the same vein, in the Netherlands more than half of all
LS mutants are in MSH6. This is probably accounted for
by the existence of two common founder mutations in
this gene (c.467C>G and c.1614_1615delinsAG) (43).
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Table 2. Founder mutations in MSH2 gene and EPCAM gene

Mutation Region/population
Estimated
age (years)a Familiesb Haplotype Features Ref.

MSH2
c.388_389del (p.Gln130fs) Portugal – 16 Yes 16% of LS mutations

in their series
(37)

c.942+3A>T Newfoundland – 11 Yes 27% of LS mutations
in their series

(12)

c.1165C>T (p.Arg389X) Quebec – 3 Yes – (92)
c.1452_1455del (p.Asn486fs) China (Guangdong) 550–2575 10 Yes 21% of LS mutations

in their series
(36)

c.1788_1790del (p.Asn596del) Denmark – 5 Yes – (95)
c.1906G>C (p.Ala636Pro) Ashkenazi Jews 200–500 16 Yes 1/3 of Ashkenazy

Jews with
Amsterdam criteria

(51, 54)

c.2063T>G (p.Met688Arg) Spain (Tenerife Island) – 5 Yes – (79)
c.[2635-3T>C; 2635-5C>T] Spain – 4 Yes – (96)
Exon 1–6 deletion North America ∼500 41 Yes 6.8% of LS mutations

in United States
(57, 58)

Exon 1–6 deletion Italy – 3 Yes – (60)
Exon 4–8 deletion Spain – 4 Yes 17% of LS mutations

in their series
(41)

Exon 7 deletion Spain – 3 Yes 13% of LS mutations
in their series

(41)

Exon 8 deletion Italy (Sardinia Island) – 7 Yes – (42)
Exon 8 deletion Italy (Sardinia Island) – 2 Yes – (42)
EPCAM
Exon 8–9 deletion Spain – 3 Yes – (63)
Exon 8–9 deletion Denmark – 3 Yes – (62)

aEstimation of the years that had passed since the most common ancestor appeared.
bApparently unrelated families described in the referred paper.

Authors of this study also discussed whether the high
frequency of MSH6 mutations could be attributed to the
use of less stringent clinical inclusion criteria than in
other studies. They argued that the later age of onset of
disease because of mutations in MSH6 may lead to a
persistence of founder mutations in this gene, as they
had seen in their series (43).

A similar hypothesis has been proposed for PMS2 gene
by Tomsic et al. (44), who observed only 36 distinct
mutations in a sample of 61 independently ascertained
Caucasian probands of mixed European background with
PMS2 mutations. Six of these mutations were detected
in more than two individuals and accounted for 51% of
the ostensibly unrelated probands. By haplotyping they
found that two mutations (c.137G>T and exon 10 dele-
tion) were founders and a third one (c.1A>G) was a prob-
able founder (44). They suggested that it is possible that
the two MMR genes with the lowest penetrance (PMS2
and MSH6) also share the property of having frequent
recurrent or founder mutations, being maybe more abun-
dant in PMS2 (44). Although this is a plausible hypothe-
sis, considering the founder mutations in the MMR genes
that have been described so far (Tables 1–3), we do not
notice an increased accumulation in MSH6 and PMS2
compared with MLH1 and MSH2. This could be because
of the fact that lower penetrance and higher age of onset
of LS in MSH6 and PMS2 genes (45–47) may uncover
the presence of mutations in these genes. Additionally,

MSH6 and PMS2 were discovered to be associated to LS
later than MLH1 and MSH2, therefore the later establish-
ment of their genetic testing, added to the difficulty to
screen PMS2 because of the presence of many pseudo-
genes, may be delaying as well the discovery of founder
mutations. More studies will be needed to more precisely
determine the distribution of founder mutations among
the MMR genes.

Founder mutations in AJ

Mutation spectra and gene distribution among AJ are
unique because of their particular genetic isolation.
Therefore, founder mutations are commonly seen
(48–52). In LS, three founder mutations have been
showed to account for 73% of all MMR genes mutations
in a cohort of AJ from Israel, thus changing again the
distribution of mutations (75% in MSH2, 18% in MSH6
and only 8% in MLH1) (53). The most common one
appears in MSH2 (c.1906G>C), is highly penetrant in
the AJ population and dates 200–500 years ago (51, 54).
The other two, present in MSH6 gene (c.3959_3962del
and c.3984_3987dup) and showed to be highly penetrant
as well and harbour a higher risk to develop EC than
CRC (52). They appeared approximately 1425 and
1325 years ago, respectively (52). In the Israeli cohort of
AJ, three patients carried one of the founder mutations
in both alleles and developed constitutional mismatch
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Table 3. Founder mutations in MSH6 gene and PMS2 gene

Mutation Region/population
Estimated
age (years)a Familiesb Haplotype Features Ref.

MSH6
c.10C>T (p.Gln4X) Quebec ∼513 11 Yes Higher risk of EC than

CRC
(97)

c.467C>G (p.Ser156X) Netherlands – 7 Yes – (43)
c.650dupT (p.Lys218X) Netherlands – 7 Yes – (98)
c.1346T>C (p.Leu449Pro) Sweden >300 5 No Late onset age but high

lifetime risk of LS
tumors

(99)

c.1614_1615delinsAG
(p.Tyr538X)

Netherlands – 3 Yes – (43)

c.2931C>G (p.Trp977X) Sweden >200 2 No Late onset age but high
lifetime risk of LS
tumors

(99)

c.2983G>T (p.Glu995X) Finland – 2 Yes – (100)
c.3959_3962del

(p.Ala1320fs)
Ashkenazi Jews ∼1425 8 Yes – (52)

c.3984_3987dup
(p.Leu1330fs)

Ashkenazi Jews ∼1325 14 Yes – (52)

c.137G>T (p.Ser46Ile) US (Caucasian) – 10 Yes – (44)
c.736_741delins11

(p.Pro246fs)
US (British, Swedish) ∼1625 12 Yes 20% of PMS2 mutation

carriers, low penetrance
(56)

c.903G>T (p. Tyr268)
(exon 8 skipping)

US (Caucasian) – 3 Yes – (44)

c.989-1G>T Norway >2 No – (101, 102)
Exon 10 deletion US (Caucasian) – 5 Yes – (44)

aEstimation of the years that had passed since the most common ancestor appeared.
bApparently unrelated families described in the referred paper. [Correction added on 9 February 2015, after first online publication:
The founder mutation “c.10C>T (p.Gln4X)” was previously omitted and this has now been added in Table 3 and as Reference 97.
References after 97 have been pushed back by one place.]

repair deficiency (CMMR-D) (53). CMMR-D is caused
by biallelic mutations in the MMR genes and leads to
haematological malignancies and tumors of brain and
bowel early in childhood (55). The existence of founder
mutation can be associated with a higher prevalence
of the deleterious allele in the population, which can
result in unexpectedly frequent occurrence of biallelic
mutations in some populations. Similarly, Clendenning
et al. (56) underlined the significant prevalence of a
founder PMS2 mutation (c.736_741delins11), which
appeared in 1 of 399 controls. Despite its reported
reduced penetrance, over time, if the number of het-
erozygous carriers increases in the population, a rise
in the number of homozygous carriers presenting with
CMMR-D is expected (56).

Founder mutations in heterogeneous populations

Not all LS founder mutations are limited to specific, rel-
atively isolated regions or communities; they also occur
rarely in outbred populations. A remarkable example is
the American founder mutation (AFM) in MSH2 (exon
1–6 deletion), which was initially identified in nine fam-
ilies from the United States (57) and subsequently in 32
more (58). It was estimated that 6.8% of LS in the United
States are because of the AFM (57), and was calculated to
be carried by 18,981 (95%CI, 6038–34,466) Americans

(59). Nevertheless, recent estimates point a higher preva-
lence than previously thought, being clearly prominent in
Ohio, Kentucky, and Texas states (58). A second MSH2
exon 1–6 deletion, with different breakpoints and haplo-
type has been found to be shared by three families from
northern Italy (60). Other founder mutations have been
identified in the United States with a lower prevalence.
In MLH1 gene, a splicing mutation (c.589-2A>G) has
been found in 10 unrelated American families on a large
shared haplotype, representing 1% of LS mutations car-
riers diagnosed in the Mayo Clinic (61). The same muta-
tion has also been described as a founder but in a different
haplotype, in Italy (61). Several PMS2 founder mutations
have been described in the United States (44, 56).

Founder epimutations

Epimutations have been also described to cause LS by
two different mechanisms. Germline deletions of the
EPCAM gene cause that its transcription extends into
the MSH2 adjacent gene and subsequently, MSH2 pro-
moter, in cis with the deletion, is methylated and MSH2
is therefore inactivated (62). Two founder mutations have
been described so far in EPCAM gene, one in Denmark
and the other in Spain (62, 63). Transmission of MLH1
gene epimutations have also been reported to occur in
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both non-Mendelian (64) and autosomal dominant pat-
terns linked to localized cis-acting genetic variants (65,
66). Consistent with the latter, up to five families (two
from Western Australia, two from the US and one from
the Netherlands) have been showed to carry the same
two mutations in MLH1 (c.[−27C>A; c.85G>T]), which
confer cancer susceptibility through its propensity for
soma-wide epigenetic silencing (67). All families iden-
tified with such haplotype are of European ethnicity and
in four of them, sharing of a common haplotype could be
proven, providing strong evidences of a common ances-
tor with European origin (67). It is interesting that by
individually comparing haplotypes from one of the Aus-
tralian families with the two American and the Dutch
ones, authors could show a larger haplotype was shared
between the Australian and the US families, suggesting
they are more closely related to one another than to the
Dutch family (67).

Founder mutations and migratory patterns

Founder mutations in the United States
As shown by the latter example, the identification and
characterization of MMR genes founder mutations in
different and sometimes far-away geographical areas
allows us to retrace the main migratory patterns that
have involved large populations in the past centuries. Ori-
gins and prevalence of the AFM in MSH2 gene (exon
1–6 deletion) have been thoroughly studied and dis-
cussed by Clendenning et al. (58). Although the mutation
was previously thought to be carried by a putative com-
mon ancestor who migrated to the United States from
Germany in the early 18th century, a time of signifi-
cant European immigrations (68), the subsequent char-
acterization of haplotypes flanking the mutation for 29
additional families suggested an earlier founding event,
around 500 years ago. Twenty-seven of the AFM-carrier
families could be linked into seven extended families
(subfounder families), each with a common ancestor
being born between 1700 and the early 1800s. Thus,
Clendenning et al. proposed that either the subfounder
families were in the United States before this period of
time so the mutation was introduced by an early Euro-
pean immigrant or by a Native American, or the mutation
originated in Europe but was carried to the US by several
individuals during the greater European immigrations.
The fact that no carriers have been found in Europe better
supports the first hypothesis (58).

The other AFM, seen in MLH1 gene in the United
States (c.589-2A>G) also exemplifies how, by studying
the haplotypes of founder mutation carriers, we can get
anthropologically interesting theories (61). This splic-
ing mutation appeared in 10 US and 3 Italian fam-
ilies. In the United States, it occurs in a large hap-
lotype (∼4.8 Mb) that also harbors a missense variant
(c.2146G>A, p.V716M), with an approximate age of
450 years. In Italy, the mutation is shared in a shorter
haplotype (∼2.2 Mb) that does not carry the p.V716M
missense variant. Interestingly, the p.V716M was found
by itself in United States, Germany and Italy, in individ-
uals with a common haplotype of 280 kb, which allowed

the estimation of its age (5600 years). Therefore authors
suggested that the p.V716M represents a single, ancient
mutational event, and that the splicing mutation arose at
least twice, once in an early American immigrant (or in
an ancestor of an immigrant) in a chromosome carrying
the ancestral p.V716M, and once elsewhere (perhaps in
Italy) a longer time ago (61).

Italian founder mutations
The case of Italian families is interesting, with sev-
eral examples of their migratory activity within the LS
founder mutations. In the early part of the 20th cen-
tury, about four million people moved from Italy; half
of these migrated to Northern Europe, whereas the great
majority of the rest left to the US, Canada, and Aus-
tralia (69). Specifically, the Italian colonization of the
province of Quebec in Canada began in the mid-19th
century. According to this, two different MLH1 founder
mutations were identified in unrelated families of Italian
origin in Quebec (70). The c.1831delAT was described in
two Italian-Quebec families sharing the same haplotype
(70). The c.545+3A>G splicing mutation was found in
the same haplotype in an Italian family from a town
close to Naples (71) and in a Quebec family that orig-
inates from the region of Italy around Naples, which
is consistent with most Italian Immigrants to North
America coming from Southern Italy (70). This mutation
has also appeared in three Brazilian families but no hap-
lotype or genealogical study was done to link them to the
Italian founder mutation (72, 73). Similarly, the MLH1
c.2269dup has shown a founder effect in the northern
Italian district of Modena and Reggio Emilia by hap-
lotype evaluation (74) and has also been found in an
Argentinean family whose ancestors were natives from
the Reggio Emilia area (75) (Fig. 1).

Migratory flows within different regions of the same country
Other cases of MMR genes founder mutation well
exemplify the big immigration waves from Europe to
America (12, 44, 56), but other studies show that the
current distribution of more local founder mutations can
be explained by migratory patterns in geographically
localized subsets of populations. Two examples are pro-
vided by Borras et al. by means of the ancestral study of
two MLH1 founder mutations in Spain (33). The splice
variant c.306+5G>A was found in several families with
ancestors coming from the Ebro river valley, in northern
Spain. Its age was estimated to be ∼1879 years. Taking
into account the fact that the river valley is geograph-
ically isolated by mountain ranges, and the Ebro river
was navigable until the 19th century, they hypothesize
that the mutation arose somewhere in the valley and
was distributed along the river over the years (33). The
other founder mutation, c.1865T>A, was carried by
families with ancestors in the mountainous province of
Jaén, in Southern Spain and was proven to be of more
recent origin (∼384 years). This was consistent with
the identified probands being mainly from Madrid and
Barcelona, frequent destinations of internal migratory
movements during the period of 1960–1970 (33).
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Fig. 1. World map, showing the geographic ancestral origin and the supposed migration flows (arrows) of some of the main Italian MLH1 and MSH2
founder mutations. Different founder mutations are shown: MLH1 founder mutations, shared by families living in the Naples and in Quebec; MLH1
founder mutations carried by families living in the district of Modena and Argentina as well as by Italian and Brazilian families; MLH1 founder
mutation in USA (c.589-2A>G); Caucasian Australian c.-27C>A and c.85G>T MLH1 founder mutations; AFM, exon 1–6 MSH2 deletion; Finnish
founder mutations c.1732-2243_1896+404del and c.454-1G>A.

In Hong Kong, 10 families have been shown to share an
MSH2 founder mutation c.1452_1455del in a common
haplotype (36). Interestingly, they all originated from
the Guangdong province of southern China, which is the
origin of the most Hong Kong inhabitants. Given that
during the 19th and 20th centuries there were major emi-
grations from Hong Kong and Guangdong province, this
mutation is interesting not only for its founder effect in
China, but also for Chinese communities worldwide (36).

Diagnostic, surveillance and management
implications of LS founder mutations

It is well known that the presence of founder muta-
tions in a specific geographical area or population can
be very helpful in designing cost-effective molecu-
lar diagnostic approaches. By screening a particular
frequent founder mutation as the first step in the rou-
tine screening for LS we can avoid further expensive
mutational testing in a significant number of samples.
The most evident case is probably found in Finland,
where the screening of the two founder mutations that
account for around half of their LS families is a first

step in the mutation analysis (76). In our experience
in Northern Italy, when tumor IHC is suggestive for
MLH1 alterations, the germline mutation analysis starts
from the MLH1 founder mutation typically found in
the area (c.2269dup) (74). Raskin et al. proposed that a
panel designed to detect the known AJ founder muta-
tions (MSH2 c.1906G>C, MSH6 c.3959_3962del and
c.3984_3987dup, APC I1307K, and BLM Ash) could
have value as a first-line screen in all AJ CRC and/or
EC cases, irrespective of family history, IHC or MSI
status (52). The benefit of founders becomes even more
evident when the mutations are gross rearrangements.
In most of these cases the exact breakpoints have been
characterized, thus permitting the design of mutation
detection by a simple cost and time-effective PCR test.
In this line, it was proposed a test of this kind for the
AFM, as a first line of molecular testing in patients
whose tumors stain negatively for MSH2 (58). A similar
approach is used in Sardinia for the two founder MSH2
exon 8 deletions, found to have different breakpoints
(42). Pérez-Carbonero also suggested the need to design
and implement as a pre-screening a simple, fast, and
cheap method to detect their two founder mutations
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in MSH2 (exon 4–8 and exon 7 deletions) (41). The
standardization of next generation sequencing (NGS)
methods and analyses in the past few years is starting to
make possible the introduction of this technology into
the diagnostic molecular strategies, usually through the
analysis of gene panels (77). Possibly, with the future
global establishment of NGS in the genetic screening
algorithms of LS, the existence of founder mutations will
partially lose its diagnostic interest; the above mentioned
technique has, in fact, shown promising results in the
detection of all classes of MMR mutations, including
single nucleotide variants, small insertions and deletions,
and large copy number variants (78). However, those
founder mutations with a high prevalence within specific
populations can still represent a useful cost-effective
tool before considering the more expensive NGS
approaches.

A significant proportion of the mutations found in LS
are missense or putative splice variants with unknown
clinical significance. Although some algorithms to clar-
ify their putative pathogenic effect have been proposed
(30), in a typical routine diagnostic setting it is not
affordable to address the effects of each of the vari-
ants encountered. When these changes appear to be
founder in a certain population, more research efforts
have been made to elucidate the effect of the variants
thus improving genetic counseling of carrier families.
Through segregation investigation, computational anal-
yses, mRNA processing and stability assays and pro-
tein expression experiments, Borras et al. were able to
confirm that two MLH1 founder changes from Spain,
a splice variant (c.306+5G>A) and a missense variant
(c.1865T>A), were pathogenic and the cause of the dis-
ease in carrier families (33). However, in most of the
cases a less thorough characterization, without functional
assays has been sufficient to show the causal deleteri-
ous effect of the founder variants. In Tenerife Island,
the MSH2 c.2063T>G missense variant was consid-
ered pathogenic because of the switch of polarity of the
aminoacid change (p.Met688Arg) and the conservation
between species of the affected residue, which belongs to
an important functional domain of the protein (79). Apart
from these examples, several other criteria and functional
assays have been used to determinate the pathogenicity
of the several variants presented in Tables 1–3.

In general, it is accepted that penetrance of cancer
among MLH1 and MSH2 is higher than for MSH6 and
PMS2 (47, 80) and that EC is more frequently found than
CRC in women carrying MSH6 mutations (81). Some
founder mutations have been described to cause differ-
ential phenotypes. In Italy, the mutation c.2252_2253del
significantly increased the risk of pancreatic tumors
compared with other MLH1 mutations (82). The two
founder mutations described in MLH1 gene by Bor-
ras et al. (c.306+5G>A and c.1865T>A), showed a
lower penetrance compared to other pathogenic Spanish
MLH1 mutations (33). In Denmark, the founder muta-
tion c.1667+2_1667+8del7ins4 conferred comparable
risks for CRC and lower risks for extracolonic cancer
than the other MLH1 mutant Danish families (35). In
Northern Italy, a genotype–phenotype analysis of the

founder mutation c.2269dup revealed a proclivity to
multiple tumors arising in the same subject and a higher
tumor burden per family compared to other MLH1 or
MSH2 mutations (83). However, most of the founder
studies either do not thoroughly examine particular
clinical characteristics in the carrier families, or the
phenotypic patterns are similar to the expected. There-
fore, although preliminary search for common founder
mutations permits cost-effective and time-saving diag-
nostics strategies for LS, this cannot yet be translated
into tailored cancer control strategies because of the lack
of evidences of highly specific phenotypes related to the
presence of founder mutations.

Conclusions

The identification of at least 55 founder mutations in
LS has helped the diagnostic, surveillance and manage-
ment of LS patients for almost two decades. In some
populations, founder mutations represent up to 50% of
their LS-causing mutations, which is extremely help-
ful for the development of cost-effective strategies to
diagnose LS. This becomes even more advantageous in
the case of founder gross rearrangements thanks to the
possibility of designing easy polymerase chain reaction
(PCR) assays to detect them once the breakpoints are
known. With the imminent introduction of NGS into
the molecular diagnostic algorithms of LS, pre-screening
of the highly prevalent founder mutations will help
reduce the number of samples undergoing expensive
high-throughput sequencing. Although several studies
have assessed the phenotypical features of LS founder
mutations, no clinical management strategies specific for
founder mutations seem to be necessary.
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