205 research outputs found

    Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding

    Get PDF
    Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide‱RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: (i) aaRS enzymes must be interdependent; (ii) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; (iii) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; (iv) the Central Dogma's emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene-replicase-translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today

    Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling

    Get PDF
    The role of aminoacyl-tRNA synthetases (aaRS) in the emergence and evolution of genetic coding poses challenging questions concerning their provenance. We seek evidence about their ancestry from curated structure-based multiple sequence alignments of a structurally invariant “scaffold” shared by all 10 canonical Class I aaRS. Three uncorrelated phylogenetic metrics—mutation frequency, its uniformity, and row-by-row cladistic congruence—imply that the Class I scaffold is a mosaic assembled from successive genetic sources. Metrics for different modules vary in accordance with their presumed functionality. Sequences derived from the ATP– and amino acid– binding sites exhibit specific two-way coupling to those derived from Connecting Peptide 1, a third module whose metrics suggest later acquisition. The data help validate: (i) experimental fragmentations of the canonical Class I structure into three partitions that retain catalytic activities in proportion to their length; and (ii) evidence that the ancestral Class I aaRS gene also encoded a Class II ancestor in frame on the opposite strand. A 46-residue Class I “protozyme” roots the Class I tree prior to the adaptive radiation of the Rossmann dinucleotide binding fold that refined substrate discrimination. Such rooting implies near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved after the genetic code had been implemented in an RNA world. Further, pinpointing discontinuous enhancements of aaRS fidelity establishes a timeline for the growth of coding from a binary amino acid alphabet

    Meaning behind measurement : self-comparisons affect responses to health related quality of life questionnaires

    Get PDF
    Purpose The subjective nature of quality of life is particularly pertinent to the domain of health-related quality of life (HRQOL) research. The extent to which participants’ responses are affected by subjective information and personal reference frames is unknown. This study investigated how an elderly population living with a chronic metabolic bone disorder evaluated self-reported quality of life. Methods Participants (n = 1,331) in a multi-centre randomised controlled trial for the treatment of Paget’s disease completed annual HRQOL questionnaires, including the SF-36, EQ-5D and HAQ. Supplementary questions were added to reveal implicit reference frames used when making HRQOL evaluations. Twenty-one participants (11 male, 10 female, aged 59–91 years) were interviewed retrospectively about their responses to the supplementary questions, using cognitive interviewing techniques and semi-structured topic guides. Results The interviews revealed that participants used complex and interconnected reference frames to promote response shift when making quality of life evaluations. The choice of reference frame often reflected external factors unrelated to individual health. Many participants also stated that they were unclear whether to report general or disease-related HRQOL. Conclusions It is important, especially in clinical trials, to provide instructions clarifying whether ‘quality of life’ refers to disease-related HRQOL. Information on selfcomparison reference frames is necessary for the interpretation of responses to questions about HRQOL.The Chief Scientist Office of the Scottish Government Health Directorates, The PRISM funding bodies (the Arthritis Research Campaign, the National Association for the Relief of Paget’s disease and the Alliance for Better Bone Health)Peer reviewedAuthor final versio

    Adenovirus vector delivery stimulates natural killer cell recognition

    Get PDF
    We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro. RDAd vector delivery induced cytolysis by a range of NK cell populations including the NK cell clone NKL, primary polyclonal NK lines and a proportion of NK clones (36 %) in autologous HLA-matched assays. Adenovirus-induced cytolysis was inhibited by antibody blocking of the NK-activating receptor NKG2D, implicating this receptor in this function. NKG2D is ubiquitously expressed on NK cells and CD8+ T cells. Significantly, γ-irradiation of the vector eliminated the effect, suggesting that breakthrough expression from the vector induces at least some of the pro-inflammatory responses of unknown aetiology following the application of RDAd vectors during in vivo gene delivery

    Stem cell transplantation in traumatic spinal cord injury:a systematic review and meta-analysis of animal studies

    Get PDF
    Spinal cord injury (SCI) is a devastating condition that causes substantial morbidity and mortality and for which no treatments are available. Stem cells offer some promise in the restoration of neurological function. We used systematic review, meta-analysis, and meta-regression to study the impact of stem cell biology and experimental design on motor and sensory outcomes following stem cell treatments in animal models of SCI. One hundred and fifty-six publications using 45 different stem cell preparations met our prespecified inclusion criteria. Only one publication used autologous stem cells. Overall, allogeneic stem cell treatment appears to improve both motor (effect size, 27.2%; 95% Confidence Interval [CI], 25.0%-29.4%; 312 comparisons in 5,628 animals) and sensory (effect size, 26.3%; 95% CI, 7.9%-44.7%; 23 comparisons in 473 animals) outcome. For sensory outcome, most heterogeneity between experiments was accounted for by facets of stem cell biology. Differentiation before implantation and intravenous route of delivery favoured better outcome. Stem cell implantation did not appear to improve sensory outcome in female animals and appeared to be enhanced by isoflurane anaesthesia. Biological plausibility was supported by the presence of a dose-response relationship. For motor outcome, facets of stem cell biology had little detectable effect. Instead most heterogeneity could be explained by the experimental modelling and the outcome measure used. The location of injury, method of injury induction, and presence of immunosuppression all had an impact. Reporting of measures to reduce bias was higher than has been seen in other neuroscience domains but were still suboptimal. Motor outcomes studies that did not report the blinded assessment of outcome gave inflated estimates of efficacy. Extensive recent preclinical literature suggests that stem-cell-based therapies may offer promise, however the impact of compromised internal validity and publication bias mean that efficacy is likely to be somewhat lower than reported here

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αÎČ and γΎ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169

    Get PDF
    The genomes of commonly used variants of human cytomegalovirus (HCMV) strains Towne and AD169 each contain a substantial mutation in which a region (UL/bâ€Č) at the right end of the long unique region has been replaced by an inverted duplication of a region from the left end of the genome. Using high-throughput technology, we have sequenced HCMV strain Towne (ATCC VR-977) and confirmed the presence of two variants, one exhibiting the replacement in UL/bâ€Č and the other intact in this region. Both variants are mutated in genes RL13, UL1, UL40, UL130, US1 and US9. We have also sequenced a novel AD169 variant (varUC) that is intact in UL/bâ€Č except for a small deletion that affects genes UL144, UL142, UL141 and UL140. Like other AD169 variants, varUC is mutated in genes RL5A, RL13, UL36 and UL131A. A subpopulation of varUC contains an additional deletion affecting genes IRS1, US1 and US2

    The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux

    Get PDF
    The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. One class of extragalactic sources which may produce such high-energy neutrinos are blazars. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue (2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the detection of individual sources. In contrast to previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalogue. No significant excess is observed and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of the 2LAC blazars to the observed astrophysical neutrino flux to be 27%27 \% or less between around 10 TeV and 2 PeV, assuming equipartition of flavours at Earth and a single power-law spectrum with a spectral index of −2.5-2.5. We can still exclude that the 2LAC blazars (and sub-populations) emit more than 50%50 \% of the observed neutrinos up to a spectral index as hard as −2.2-2.2 in the same energy range. Our result takes into account that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC γ\gamma-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
    • 

    corecore