31 research outputs found

    Mechanism of Urinary Calcium Regulation by Urinary Magnesium and pH

    Get PDF
    Urinary magnesium and pH are known to modulate urinary calcium excretion, but the mechanisms underlying these relationships are unknown. In this study, the data from 17 clinical trials in which urinary magnesium and pH were pharmacologically manipulated were analyzed, and it was found that the change in urinary calcium excretion is directly proportional to the change in magnesium excretion and inversely proportional to the change in urine pH; a regression equation was generated to relate these variables (R2 = 0.58). For further exploration of these relationships, intravenous calcium chloride, magnesium chloride, or vehicle was administered to rats. Magnesium infusion significantly increased urinary calcium excretion (normalized to urinary creatinine), but calcium infusion did not affect magnesium excretion. Parathyroidectomy did not prevent this magnesium-induced hypercalciuria. The effect of magnesium loading on calciuria was still observed after treatment with furosemide, which disrupts calcium and magnesium absorption in the thick ascending limb, suggesting that the effect may be mediated by the distal nephron. The calcium channel TRPV5, normally present in the distal tubule, was expressed in Xenopus oocytes. Calcium uptake by TRPV5 was directly inhibited by magnesium and low pH. In summary, these data are compatible with the hypothesis that urinary magnesium directly inhibits renal calcium absorption, which can be negated by high luminal pH, and that this regulation likely takes place in the distal tubule

    Aligning business process reengineering in implementing global supply chain systems by the SCOR model

    No full text
    International audienceAs supply chains continue to replace individual companies as the management arena for value-adding from the beginning of the twenty first century, understanding the supply chain management practices in a globalization context becomes increasingly important. The Supply Chain Operations Reference (SCOR) Model, which was developed by the experts and practitioners of the Supply Chain Council, is a major framework for supply chain planning which features supply chain management practices and business process reengineering. Despite being an integrative guide with many merits, it only provides a ‘top-down' approach which requires the comparative analyses of post- and pro- performance indices as a basis of business process modification. This study discusses the limitations of current SCOR analysis and provides a mapping technique— Causes/Effects, the SCOR Standard, and Mutual Solution (CESM)—for gap mapping, problem prioritization, and business process modification in a supply chain setting. As such it is one of the early empirical studies combining BPR and SCM disciplines. The research results can facilitate the implementation processes of multinational supply chain projects by identifying the gaps and linking them to the channel entities

    Precision luminosity measurement in proton-proton collisions at root S=13 TeV in 2015 and 2016 at CMS

    Get PDF
    The measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton-proton collisions at root S = 13 TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 fb(-1) in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders.Peer reviewe

    Study of the processes χcJ → Ξ−Ξ¯+ and Ξ0Ξ¯0

    No full text
    Using 448.1 × 106 ψ(3686) decays collected with the BESIII detector at the BEPCII e+e− storage rings, the branching fractions and angular distributions of the decays χcJ → Ξ−Ξ¯¯¯¯+ and Ξ0Ξ¯¯¯¯0 (J = 0, 1, 2) are measured based on a partial-reconstruction technique. The decays χc1 → Ξ0Ξ¯¯¯¯0 and χc2 → Ξ0Ξ¯¯¯¯0 are observed for the first time with statistical significances of 7σ and 15σ, respectively. The results of this analysis are in good agreement with previous measurements and have significantly improved precision

    Search for an axion-like particle in radiative J/ψ decays

    No full text
    We search for an axion-like particle (ALP) a through the process ψ(3686)→π+π−J/ψ, J/ψ→γa, a→γγ in a data sample of (2.71±0.01)×109 ψ(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψ→γa and the ALP-photon coupling constant gaγγ are set at 95% confidence level in the mass range of 0.165≤ma≤2.84GeV/c2. The limits on B(J/ψ→γa) range from 8.3×10−8 to 1.8×10−6 over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165≤ma≤1.468GeV/c2

    The CDF-II detector: Technical design report

    No full text
    corecore