186 research outputs found

    Who Participates - A Sociological Interpretation of Natural Resource Decisions

    Get PDF

    Other Voices, Other Ways, Better Practices: Bridging Local and Professional Environmental Knowledge

    Get PDF

    Nature And Human Nature

    Get PDF

    A Genome-wide RNA Interference Screen Reveals that Variant Histones Are Necessary for Replication-Dependent Histone Pre-mRNA Processing

    Get PDF
    Metazoan replication-dependent histone mRNAs are not polyadenylated and instead end in a conserved stem loop that is the cis element responsible for coordinate posttranscriptional regulation of these mRNAs. Using biochemical approaches, only a limited number of factors required for cleavage of histone pre-mRNA have been identified. We therefore performed a genome-wide RNA interference screen in Drosophila cells using a GFP reporter that is expressed only when histone pre-mRNA processing is disrupted. Four of the 24 genes identified encode proteins also necessary for cleavage/polyadenylation, indicating mechanistic conservation in formation of different mRNA 3' ends. We also unexpectedly identified the histone variants H2Av and H3.3A/B. In H2Av mutant cells, U7 snRNP remains active but fails to accumulate at the histone locus, suggesting there is a regulatory pathway that coordinates the production of variant and canonical histones that acts via localization of essential histone pre-mRNA processing factors

    A combined low-radio frequency/X-ray study of galaxy groups I. Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz

    Full text link
    We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGN) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at >= 1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems, and are typically associated with small, low- or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that coexist with current activity is found in six groups of the sample.Comment: Accepted for publication in the Astrophysical Journal Supplement Series, 26 pages, 18 figures. A version with high-quality figures is http://www.astro.umd.edu/~simona/giacintucci_hr.pd

    Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    Get PDF
    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations

    Energy Partitioning Constraints at Kinetic Scales in Low- Turbulence

    Get PDF
    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here we present observations of plasma fluctuations in low- turbulence using data from NASAs Magnetospheric Multiscale mission in Earths magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance should be highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas

    Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Get PDF
    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations

    Circadian Disruption, \u3cem\u3ePer3\u3c/em\u3e, and Human Cytokine Secretion

    Get PDF
    Circadian disruption has been linked with inflammation, an established cancer risk factor. Per3 clock gene polymorphisms have also been associated with circadian disruption and with increased cancer risk. Patients completed a questionnaire and provided a blood sample prior to undergoing a colonoscopy (n=70). Adjusted mean serum cytokine concentrations (IL-6, TNF-alpha, gamma-INF, IL-I ra, IL-I-beta, VEGF) were compared among patients with high and low scores for fatigue (Multidimensional Fatigue Inventory), depressive symptoms (Beck Depression Inventory II), or sleep disruption (Pittsburgh Sleep Quality Index), or among patients with different Per3 clock gene variants. Poor sleep was associated with elevated VEGF, and fatigue-related reduced activity was associated with elevated TNF-alpha concentrations. Participants with the 4/5 or 5/5 Per3 variable tandem repeat sequence had elevated IL-6 concentrations compared to those with the 4/4 genotype. Biological processes linking circadian disruption with cancer remain to be elucidated. Increased inflammatory cytokine secretion may play a role
    • …
    corecore