19 research outputs found

    An appeal to the global health community for a tripartite innovation: an ‘‘Essential Diagnostics List,’’ ‘‘Health in All Policies,’’ and ‘‘See-Through 21st Century Science and Ethics"

    Get PDF
    Diagnostics spanning a wide range of new biotechnologies, including proteomics, metabolomics, and nanotechnology, are emerging as companion tests to innovative medicines. In this Opinion, we present the rationale for promulgating an ‘‘Essential Diagnostics List.’’ Additionally, we explain the ways in which adopting a vision for ‘‘Health in All Policies’’ could link essential diagnostics with robust and timely societal outcomes such as sustainable development, human rights, gender parity, and alleviation of poverty. We do so in three ways. First, we propose the need for a new, ‘‘see through’’ taxonomy for knowledge-based innovation as we transition from the material industries (e.g., textiles, plastic, cement, glass) dominant in the 20th century to the anticipated knowledge industry of the 21st century. If knowledge is the currency of the present century, then it is sensible to adopt an approach that thoroughly examines scientific knowledge, starting with the production aims, methods, quality, distribution, access, and the ends it purports to serve. Second, we explain that this knowledge trajectory focus on innovation is crucial and applicable across all sectors, including public, private, or public–private partnerships, as it underscores the fact that scientific knowledge is a co-product of technology, human values, and social systems. By making the value systems embedded in scientific design and knowledge co-production transparent, we all stand to benefit from sustainable and transparent science. Third, we appeal to the global health community to consider the necessary qualities of good governance for 21st century organizations that will embark on developing essential diagnostics. These have importance not only for science and knowledge based innovation, but also for the ways in which we can build open, healthy, and peaceful civil societies today and for future generations

    Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia

    Get PDF
    Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00406-011-0202-x) contains supplementary material, which is available to authorized users
    corecore