116 research outputs found

    FSCN1 and epithelial mesenchymal transformation transcription factor expression in human pancreatic intraepithelial neoplasia and ductal adenocarcinoma

    Get PDF
    Background: The actin regulatory protein fascin (FSCN1) and epithelial mesenchymal transition (EMT) transcription factor (TF) SLUG/SNAI2 have been shown to be expressed in PDAC and its precursor lesions (pancreatic intraepithelial neoplasia (PanIN), graded 1-3) in in vitro and murine in vivo studies. Our aim was to investigate the expression of FSCN1 and EMT-TFs and their association with survival in human PanIN and PDAC. Methods: Expression was investigated in silico using TCGA PanCancer Atlas data (177 PDAC samples with mRNA data) and immunohistochemical staining of a tissue microarray (TMA) (59 PDAC patients). Results: High FSCN1 expression was associated with poorer overall survival (p = 0.02) in the TCGA data. EMT-TF expression was not associated with survival, however FSCN1 expression correlated with that of the EMT-TFs SLUG/SNAI2 (rho = 0.49, p<0.001) and TWIST1 (rho = 0.52, p<0.001). TMA IHC showed low expression of SNAI2 and TWIST1 in normal ductal epithelium, while FSCN1 was not expressed. SNAI2 increased slightly in PanIN1-2, then decreased in higher grade lesions. TWIST1 increased in PanIN2-3 and was retained in PDAC. FSCN1 was increasingly expressed from PanIN2 onwards. SNAI2 and TWIST1 expression positively correlated in all grades of PanIN and PDAC (rho = 0.52, p<0.001). FSCN1 correlated positively with SNAI2 in PanIN1 (rho = 0.56, p<0.01). Conclusions: Increased expression of EMT-TFs in low-grade PanIN followed by FSCN1 in PanIN3 and PDAC suggests EMT-TFs may trigger FSCN1 expression and are potential early diagnostic markers. FSCN1 expression correlated with overall survival in PDAC and may have value as a prognostic marker

    Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22

    Get PDF
    A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. © 2012 Cicek et al

    Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice

    Get PDF
    New-onset diabetes in patients with pancreatic cancer is likely to be a paraneoplastic phenomenon caused by tumor-secreted products. We aimed to identify the diabetogenic secretory product(s) of pancreatic cancer. Methods: Using microarray analysis, we identified adrenomedullin as a potential mediator of diabetes in patients with pancreatic cancer. Adrenomedullin was up-regulated in pancreatic cancer cell lines, in which supernatants reduced insulin signaling in beta cell lines. We performed quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry on human pancreatic cancer and healthy pancreatic tissues (controls) to determine expression of adrenomedullin messenger RNA and protein, respectively. We studied the effects of adrenomedullin on insulin secretion by beta cell lines and whole islets from mice and on glucose tolerance in pancreatic xenografts in mice. We measured plasma levels of adrenomedullin in patients with pancreatic cancer, patients with type 2 diabetes mellitus, and individuals with normal fasting glucose levels (controls). Results: Levels of adrenomedullin messenger RNA and protein were increased in human pancreatic cancer samples compared with controls. Adrenomedullin and conditioned media from pancreatic cell lines inhibited glucose-stimulated insulin secretion from beta cell lines and islets isolated from mice; the effects of conditioned media from pancreatic cancer cells were reduced by small hairpin RNA-mediated knockdown of adrenomedullin. Conversely, overexpression of adrenomedullin in mice with pancreatic cancer led to glucose intolerance. Mean plasma levels of adrenomedullin (femtomoles per liter) were higher in patients with pancreatic cancer compared with patients with diabetes or controls. Levels of adrenomedullin were higher in patients with pancreatic cancer who developed diabetes compared those who did not. Conclusions: Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice.Fil: Aggarwal, Gaurav. Mayo Clinic College of Medicine; Estados UnidosFil: Ramachandran, Vijaya. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Javeed, Naureen. Mayo Clinic College of Medicine; Estados UnidosFil: Arumugam, Thiruvengadam. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Dutta, Shamit. Mayo Clinic College of Medicine; Estados UnidosFil: Klee, George G.. Mayo Clinic College of Medicine; Estados UnidosFil: Klee, Eric W.. Mayo Clinic College of Medicine; Estados UnidosFil: Smyrk, Thomas C.. Mayo Clinic College of Medicine; Estados UnidosFil: Bamlet, William. Mayo Clinic College of Medicine; Estados UnidosFil: Han, Jing Jing. Mayo Clinic College of Medicine; Estados UnidosFil: Rumie Vittar, Natalia Belen. Mayo Clinic College of Medicine; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Biología Molecular. Sección Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: De Andrade, Mariza. Mayo Clinic College of Medicine; Estados UnidosFil: Mukhopadhyay, Debabrata. Mayo Clinic College of Medicine; Estados UnidosFil: Petersen, Gloria M.. Mayo Clinic College of Medicine; Estados UnidosFil: Fernandez Zapico, Martin Ernesto. Mayo Clinic College of Medicine; Estados UnidosFil: Logsdon, Craig D.. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Chari, Suresh T.. Mayo Clinic College of Medicine; Estados Unido

    Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer

    Get PDF
    Background Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. Methods We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. Results We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P Conclusion Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.Peer reviewe

    Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    Get PDF
    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene
    • …
    corecore