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Abstract

Survival in epithelial ovarian cancer (EOC) is influenced by the host immune response, yet the

key genetic determinants of inflammation and immunity that impact prognosis are not known. The

nuclear factor-kappa B (NF-κB) transcription factor family plays an important role in many

immune and inflammatory responses, including the response to cancer. We studied common

inherited variation in 210 genes in the NF-κB family in 10,084 patients with invasive EOC (5,248

high grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous) from the Ovarian

Cancer Association Consortium. Associations between genotype and overall survival were

assessed using Cox regression for all patients and by major histology, adjusting for known

prognostic factors and correcting for multiple testing (threshold for statistical significance—p <

2.5×10−5). Results were statistically significant when assessed for patients of a single histology.

Key associations were with CARD11 (caspase recruitment domain family, member 11)

rs41324349 in patients with mucinous EOC (HR 1.82, 95% CI 1.41–2.35, p=4.13×10−6) and

TNFRSF13B (tumor necrosis factor receptor superfamily, member 13B) rs7501462 in patients

with endometrioid EOC (HR 0.68, 95% CI 0.56–0.82, p=2.33×10−5). Other associations of note

included TRAF2 (TNF receptor-associated factor 2) rs17250239 in patients with high-grade serous

EOC (HR 0.84, 95% CI 0.77–0.92, p=6.49×10−5) and PLCG1 (phospholipase C, gamma 1)

rs11696662 in patients with clear cell EOC (HR 0.43, 95% CI 0.26–0.73, p=4.56×10−4). These

associations highlight the potential importance of genes associated with host inflammation and

immunity in modulating clinical outcomes in distinct EOC histologies.
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INTRODUCTION

Epithelial ovarian cancer (EOC) is the sixth leading cause of cancer death among women in

developed countries (1), with a five-year survival rate of only 37% in the United States (2).

A key cause of poor survival is a lack of specific symptoms and screening methods; as such,

the majority of EOC patients present with distant spread of disease. A number of features in

addition to stage are known to impact clinical outcome, including age at diagnosis (3),

Correspondence: Ellen L. Goode, Ph.D., M.P.H., Department of Health Sciences Research, Mayo Clinic, 200 First Street SW,
Rochester, MN 55905, USA, Phone 507/266-7997; Fax 507/266-2478, egoode@mayo.edu.

Conflict of interest: There are no conflicts of interest to be disclosed with the exception of: Bridget Charbonneau was an employee of
Mayo Clinic at the time this manuscript was drafted and is currently an employee of and owns stock in Eli Lilly and Company.

NIH Public Access
Author Manuscript
Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
Cancer Epidemiol Biomarkers Prev. 2014 July ; 23(7): 1421–1427. doi:10.1158/1055-9965.EPI-13-0962.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



extent of residual disease following initial cytoreductive surgery (optimal versus

suboptimal) (4), and baseline performance status (5). Genetic polymorphisms may also

influence EOC survival (6, 7). Understanding the totality of potential prognostic factors is

key to discerning pathogenic mechanisms that underlie carcinogenesis and progression in

EOC. Inflammation is known to play a role tumorigenesis (8); inflammation from multiple

causes, including talc use (9) and endometriosis (9, 10), and the presence of non-specific

inflammatory markers such as C-reactive protein (CRP) are associated with increased EOC

risk (11). Furthermore, the presence of an ongoing inflammatory response, measured by

CRP and hypoalbuminemia, has been shown to independently predict poor prognosis in

advanced EOC (12).

The nuclear factor-kappa B (NF-κB) family of transcription factors regulates the

transcription of multiple proteins, including cytokines, chemokines, acute phase reactants,

complement factors, adhesion molecules, and other proteins involved in inflammation,

apoptosis, and cell division (13). In canonical NF-κB signaling, binding of NF-κB-

associated receptors leads to phosphorylation and activation of the inhibitor of kappa B

kinase (IKK) complex, which leads to phosphorylation and proteosomal degradation of the

inhibitor of kappa B (IκB), thus releasing NF-κB transcription factors into the nucleus to

regulate gene transcription (14). Alternatively, receptor binding and IKK activation can lead

to processing of the p100 protein into active p52, which binds the NF-κB family member

Rel-B, translocates to the nucleus, and regulates gene transcription (14). To assess the role

of genetic variation in NF-κB signaling on EOC survival, we evaluated common inherited

single nucleotide polymorphisms (SNPs) in key genes which mediate NF-κB activation,

inhibit NF-κB function, assist degradation, or regulate nuclear function among patients from

the Ovarian Cancer Association Consortium (OCAC).

MATERIALS AND METHODS

Study Participants

A total of 10,084 women with invasive EOC (37,171 person-years follow-up) and greater

than 90% estimated European ancestry were analyzed as described previously (15, 16).

Participants were from 28 OCAC studies (Supplemental Table 1) based in Europe, North

America, and Australia which conducted follow-up for vital status, including 12 studies

(AUS, BAV, HAW, HSK, LAX, MAL, MAY, NCO, NEC, ORE, PVD, and SRO) followed

for disease recurrence or progression.

SNP Selection

We identified 210 key genes (Supplemental Table 2) known to encode NF-κB subunits or

molecules key to NF-κB activation (in signaling cascade), inhibition (inhibitory role),

degradation (involved in proteasomal degradation), and nuclear function (nuclear proteins

involved in transcription) (6). TagSNPs within 5 kb based on r2 ≥0.8, minor allele frequency

(MAF) ≥0.05 in Europeans were identified using the most informative source for each gene

from among HapMap Phase II Release 24 (http://www.hapmap.org), the 1000 Genomes

Project Low-Coverage Pilot (http://www.1000genomes.org/), SeattleSNPs (http://

pga.mbt.washington.edu/), Innate Immunity PGA (http://innateimmunity.net/), and NIEHS
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SNPs (http://egp.gs.washington.edu) (17). Additional putative-functional SNPs were also

included, regardless of linkage disequilibrium (LD), with European MAF ≥0.05 which were

1 kb upstream, non-synonymous, or resided in a 3′ untranslated region (UTR), 5′ UTR,

splice site, or miRNA binding site (http://www.microrna.org/microrna/home.do, http://

www.targetscan.org/). Finally, SNPs with an Illumina design score <0.4 or in LD (r2>0.80)

with a SNP found to be null (p >0.05) in a small prior analysis (16) were excluded. With this

approach, 76% of significant SNPs with MAF ≥ 0.05 were adequately tagged if we used

HapMap as our reference.

Genotyping and Quality Control

Germline genotyping was conducted using an Illumina Infinium iSelect BeadChip as part of

the Collaborative Oncological Gene-environment Study (COGS) (16). Centralized

genotyping used raw intensity data files and a cluster file generated with HapMap2

European, African, and Asian samples. Samples were excluded with 1) conversion rate

<95%, 2) heterozygosity > five standard deviations from the European mean heterozygosity,

3) ambiguous sex, 4) lowest call rate from an observed first-degree relative pair, or 5)

duplicate samples that were non-concordant for genotype or genotypic duplicates that were

not concordant for phenotype. SNPs were excluded with 1) no genotype call, 2)

monomorphism, 3) call rate <95% with MAF >0.05 or call rate <99% with MAF <0.05, 4)

deviation from Hardy-Weinberg equilibrium (p <10−7), or 5) >2% duplicate discordance.

SNP Imputation

Imputation to the 1000 Genomes (1000G) Phase I Integrated Release Version 3 haplotypes

was carried out in MaCH (18) using all 1,092 1000G samples and excluding monomorphic

and singleton sites.

Statistical Methods

HapMap2 genotypes were used to define intercontinental ancestry; among Europeans (>90%

European ancestry), we used 37,000 unlinked non-NF-κB markers in population

stratification principal components (PC) analysis (16). Cox regression accounting for left

truncation and right censoring at 10 years estimated hazard ratios (HRs) and 95% confidence

intervals (CIs) for association with overall survival, defined as time to death from any cause.

Censoring at 10 years was performed to minimize competing causes of mortality, which

become more common after 10 years from EOC diagnosis. HRs were calculated based on

the ordinal number of copies of the minor allele for all genotyped SNPs and allele dosage

variables for all imputed SNPs. Analyses were conducted overall and within the four most

common histologic subtypes (high grade serous, mucinous, endometrioid, and clear cell).

Analyses adjusted for study site and the first five population substructure PCs, as well as the

following covariates which associated with survival in these data (p <0.05, Supplemental

Table 3): age (continuous), tumor stage summarized from FIGO or SEER stage (localized,

regional, distant), tumor grade (well, moderately, poorly, or undifferentiated), oral

contraceptive use (ever, never), and, for analysis of all cases only, histology (serous,

mucinous, endometrioid, clear cell, mixed cell, undifferentiated, unknown). Sensitivity

analyses included covariates only for age, five population substructure PCs, and study site.

Analyses were also conducted with a recurrence endpoint defined as time to disease
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recurrence or death (377 additional events), among cases which were optimally debulked in

cytoreductive surgery (2,078 cases having no residual deposits of cancer that were >1 cm)

and among cases where surgical debulking was suboptimal (1,215 cases with >1 cm residual

disease).

To address multiple testing concerns, we used spectral decomposition of the observed

genotype matrix (19) to account for observed LD and estimated that the effective number of

independent tests for each analysis was 2,000. As a result, only SNPs with p-values

<2.50×10−5 (0.05/2,000) were considered statistically significant. We used SAS (SAS

Institute, Inc., Cary, NC) and R (R Foundation for Statistical Computing, Vienna, Austria),

and, in regions of interest, LocusZoom (Standalone Version) (20) and Haploreg v2 (21) for

plotting and annotation respectively.

RESULTS

We analyzed 2,254 SNPs in 210 genes for clinical outcome among 10,084 EOC cases. The

strongest survival association in any of the histology subgroups was seen in 661 mucinous

EOC with the CARD11 intronic SNP rs41324349 (HR =1.82, p =4.13×10−6, Table 1). In

addition, five of the fifty-six genotyped CARD11 SNPs were associated at p <0.005,

including two independent SNPs (r2 <0.20) with p <0.001 (Table 1). The distribution of p-

values and correlation with rs41324349 across CARD11 are shown in Figure 1 for both

directly genotyped and imputed SNPs. Imputation revealed that the CARD11 SNP

rs2527513, which was in strong LD with rs41324349, was highly correlated with survival.

For 1,452 patients with endometrioid EOC, the TNFRSF13B 3′ UTR SNP rs7501462

showed the strongest association (HR =0.68, p =2.33×10−5). Out of eighteen additional

TNFRSF13B SNPs, two others (rs7212800 and rs11078362) showed association (p <0.005)

in endometrioid EOC patients; these additional SNPs were in moderate LD with rs7501462

(r2 =0.26 and r2 =0.76, respectively).

For 5,248 high grade serous EOC patients, the TRAF2 SNP rs17250239 showed the most

significant association (HR =0.84, p =6.49×10−5), although this was just beyond our

pathway-wide threshold for statistical significance (p <2.50×10−5). The rs17250239 SNP is

located in an intronic sequence within the TRAF2 gene. In 795 clear cell EOC patients,

PLCG1 rs11696662 showed the most significant association (HR = 0.43, p = 4.56 × 10−4),

but this was not within our pathway-wide threshold for statistical significance. Finally,

among all cases, the SNPs rs61764220 and rs518162 (within the genes MAPK3 and PGR,

respectively) had the strongest survival associations (HR =0.81, p =6.50×10−4, and HR

=0.87, p =8.11×10−4, respectively, Table 1). However, these results did not meet our

threshold for statistical significance taking into account multiple comparisons (p

<2.50×10−5), and so there were not clear associations between polymorphisms in MAPK3

and PGR and survival in EOC.

In addition to OS, we performed sensitivity analyses for time to recurrence, examined results

from minimally adjusted analyses, and assessed optimally debulked and suboptimally

debulked patients separately. The HRs for recurrence were similar to HRs for survival with

and without full covariate adjustment for each of the SNPs that we had considered to have
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the most significant associations with survival (p < 0.0001) and among optimally debulked

compared to suboptimally debulked patients (available on one-third of participants; data not

shown).

DISCUSSION

In this pooled analysis of over 10,000 EOC patients enrolled in 28 different studies within

OCAC, we evaluated associations between NF-κB-related SNPs with survival. We did not

identify SNPs associating with overall survival among all EOC patients that met our

corrected threshold for statistical significance. However, we identified three SNPs,

rs41324349, rs2527513, and rs7501462, which associated with overall survival and time to

recurrence for EOC subtypes accounting for known prognostic factors. The CARD11

intronic SNPs rs41324349 and rs2527513 were in high LD with each other and were

associated with shortened survival in patients with mucinous EOC, whereas TNFRSF13B 3′

UTR rs7501462 associated with improved outcome among patients with endometrioid EOC.

Sensitivity analyses showed concordance between HRs for overall survival and time to

recurrence, and among optimally debulked patients.

CARD11, also known as Carma 1, is an adapter protein that functions as a molecular

scaffold in leukocytes (22). CARD11 interacts with the pro-apoptotic protein BCL10, and

overexpression of CARD11 leads to increased NF-κB activation (23). Oncogenic mutations

in CARD11 have been reported in association with several types of lymphoma (24). The

expression of CARD11 in leukocytes suggests that it may influence immune/inflammatory

responses to EOC. rs41324349 lies within seven regulatory motifs that would be altered by

the base change, which could potentially alter transcription; however, this SNP is not in a

conserved domain. Six additional intronic and one synonymous SNPs located in regulatory

motifs were correlated with this SNP (r2 ≥0.6). Primary mucinous EOC is relatively

uncommon, and mechanisms responsible for tumorigenesis, invasion, and metastasis that are

specific for mucinous subtype have not yet been clearly demonstrated. Thus, it is not clear

how a change in expression or function of CARD11 would impact survival specifically in

this subgroup.

TNFRSF13B, more commonly known as TACI (transmembrane activator and calcium-

modulating cyclophilin ligand interactor), is a member of the tumor necrosis factor (TNF)

receptor superfamily and is found on B lymphocytes (25). TACI interacts with the TNF

family members BAFF (B cell activating factor) and APRIL (a proliferation-inducing

ligand) to activate NF-κB and other transcription factors in B cells. It is not known whether

rs7501462 affects TNFRSF13B expression, and it is not located in an evolutionarily

conserved domain; however, it falls in a strong enhancer region and POL2 binding site in B-

lymphoblastoid cell lines. As the primary pathologic process associated with endometrioid

ovarian carcinomas is endometriosis, alterations in TNFRSF13B that affect inflammatory

responses to endometriosis may modulate the aggressiveness of endometriosis-associated

carcinomas.

Interestingly, while SNPs associated with survival were identified for relatively rare

histologies (mucinous and endometrioid histologies), there were no SNP associations

Block et al. Page 5

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



identified for the most common EOC histology (high grade serous). This may simply reflect

underdetection of SNPs due to a relatively stringent statistical threshold for significance, as

there were several SNPs, most notably rs17250239 (HR =0.84, p =6.49×10−5) which had

survival associations not quite meeting our pre-specified threshold for significance (p <

2.5×10−5). However, this may also reflect that survival high grade serous EOC, which is

characterized by dramatic alterations in DNA macrostructure, may be more closely

associated with certain amplified or deleted regions of DNA rather than alterations at the

single nucleotide level.

The search for inherited variants associated with EOC outcome has proven challenging, with

no published variants reaching genome-wide significance to date (15, 26). Here, by testing a

candidate pathway within a consortium, we identified two SNPs from NF-κB-related genes

that associated with survival in patients with distinct histologic subtypes of EOC using a

pathway-wide statistical significance threshold. Strengths of this report include large sample

size and use of centralized genotyping; limitations include missing data on surgical

debulking status. For example, analysis by debulking status classified patients based on

whether <1 cm or ≥1 cm residual disease was present, as opposed to complete debulking (no

visible residual disease); thus, association in certain patient subsets may have been

overlooked. In addition, for some population-based studies, there was possible over-

enrollment of women with longer survival; this could also bias results to the null if NF-κB

SNPs associate only with very poor survival time.

As additional outcome-associated variants come to light, further work will address the

potential prognostic utility of a broad panel of outcome-associated SNPs. For now, we

provide evidence that the genetics of the immune/inflammatory response to EOC may

impact clinical outcome and suggest that characterization of functional mechanisms will be

a key next step to understanding this deadly disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Strength of association between CARD11 genotypes and survival of women with
mucinous EOC (N=661)
Adjusted for study site, first five European ancestry population substructure PCs, age at

diagnosis, tumor stage, tumor grade, and oral contraceptive use. Circles represent imputed

SNPs, while triangles represent genotyped SNPs.
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Table 1

SNP association with EOC overall survival (p<0.001, r2<0.20)

Histologic Subtype Gene SNP Alleles MAF HR (95% CI) p-value

Mucinous (N=661) CARD11 rs41324349 C>A 0.44 1.82 (1.41–2.35) 4.13 × 10−6

rs6944821 A>G 0.31 1.64 (1.26–2.13) 2.47 × 10−4

rs34251392 A>G 0.34 0.63 (0.48–0.82) 5.08 × 10−4

TRAF5 rs79776636 G>C 0.04 2.89 (1.70–4.92) 4.01 × 10−4

IKBKE rs10836 G>C 0.47 0.62 (0.47–0.82) 6.04 × 10−4

PIK3R1 rs10940158 G>A 0.52 1.47 (1.17–1.85) 8.47 × 10−4

Endometrioid (N=1,452) TNFRSF13B rs7501462 A>G 0.26 0.68 (0.56–0.82) 2.33 × 10−5

PELI2 rs1152468 G>C 0.40 0.75 (0.64–0.87) 1.86 × 10−4

MAP2K6 rs72847071 G>A 0.09 1.61 (1.26–2.05) 2.66 × 10−4

IL3 rs40401 G>A 0.22 0.72 (0.59–0.87) 5.65 × 10−4

TLR5 rs5744157 G>C 0.12 0.66 (0.52–0.85) 8.28 × 10−4

High grade serous (N=5,248) TRAF2 rs17250239 G>A 0.11 0.84 (0.77–0.92) 6.49 × 10−5

PRKCA rs9894564 A>G 0.24 0.90 (0.84–0.95) 5.83 × 10−4

Clear cell (N=795) PLCG1 rs11696662 G>A 0.07 0.43 (0.26–0.73) 4.56 × 10−4

MAPK1 rs72847071 T>A 0.43 0.70 (0.57–0.86) 6.10 × 10−4

All (N=10,084) MAPK3 rs61764220 A>G 0.03 0.81 (0.71–0.92) 6.50 × 10−4

PGR rs518162 G>A 0.08 0.87 (0.81–0.95) 8.11 × 10−4

Bold indicates p< 2.5×10−5; adjusted for study site, first five European ancestry population substructure PCs, age at diagnosis, tumor stage, tumor

grade, oral contraceptive use, and histology (for analyses of all cases only); SNPs with p<0.001, but correlated at r2>0.20 SNPs above are not
shown; SNP id is dbSNP 137 rsid; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; minor allele designation based on allele
frequencies in all cases.
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