644 research outputs found
Two-Photon Pathway to Ultracold Ground State Molecules of NaK
We report on high-resolution spectroscopy of ultracold fermionic
\nak~Feshbach molecules, and identify a two-photon pathway to the rovibrational
singlet ground state via a resonantly mixed \Bcres intermediate state.
Photoassociation in a Na-K atomic mixture and one-photon
spectroscopy on \nak~Feshbach molecules reveal about 20 vibrational levels of
the electronically excited \ctrip state. Two of these levels are found to be
strongly perturbed by nearby \Bsing states via spin-orbit coupling, resulting
in additional lines of dominant singlet character in the perturbed complex
{}, or of
resonantly mixed character in {}. The dominantly singlet level is used to locate
the absolute rovibrational singlet ground state via Autler-Townes spectroscopy. We demonstrate coherent
two-photon coupling via dark state spectroscopy between the predominantly
triplet Feshbach molecular state and the singlet ground state. Its binding
energy is measured to be 5212.0447(1) \cm, a thousand-fold improvement in
accuracy compared to previous determinations. In their absolute singlet ground
state, \nak~molecules are chemically stable under binary collisions and possess
a large electric dipole moment of Debye. Our work thus paves the way
towards the creation of strongly dipolar Fermi gases of NaK molecules.Comment: 23 pages, 8 figure
Ultracold Dipolar Gas of Fermionic NaK Molecules in their Absolute Ground State
We report on the creation of an ultracold dipolar gas of fermionic
NaK molecules in their absolute rovibrational and hyperfine
ground state. Starting from weakly bound Feshbach molecules, we demonstrate
hyperfine resolved two-photon transfer into the singlet ground state, coherently bridging a binding energy
difference of 0.65 eV via stimulated rapid adiabatic passage. The
spin-polarized, nearly quantum degenerate molecular gas displays a lifetime
longer than 2.5 s, highlighting NaK's stability against two-body chemical
reactions. A homogeneous electric field is applied to induce a dipole moment of
up to 0.8 Debye. With these advances, the exploration of many-body physics with
strongly dipolar Fermi gases of NaK molecules is in experimental
reach.Comment: 5 pages, 5 figure
Coherent Microwave Control of Ultracold NaK Molecules
We demonstrate coherent microwave control of rotational and hyperfine states
of trapped, ultracold, and chemically stable NaK molecules.
Starting with all molecules in the absolute rovibrational and hyperfine ground
state, we study rotational transitions in combined magnetic and electric fields
and explain the rich hyperfine structure. Following the transfer of the entire
molecular ensemble into a single hyperfine level of the first rotationally
excited state, , we observe collisional lifetimes of more than , comparable to those in the rovibrational ground state, . Long-lived
ensembles and full quantum state control are prerequisites for the use of
ultracold molecules in quantum simulation, precision measurements and quantum
information processing.Comment: 5 pages, 4 figure
Trapping of Ultracold Atoms in a Hollow-core Photonic Crystal Fiber
Ultracold sodium atoms have been trapped inside a hollow-core optical fiber.
The atoms are transferred from a free space optical dipole trap into a trap
formed by a red-detuned gaussian light mode confined to the core of the fiber.
We show that at least 5% of the atoms held initially in the free space trap can
be loaded into the core of the fiber and retrieved outside.Comment: 4 pages, 3 figures, corrected author list, added refs, changed figs,
changed content, accepted by PR
Recommended from our members
Thermally Activated Delayed Fluorescence in a Y3N@C80 Endohedral Fullerene: Time-Resolved Luminescence and EPR Studies
The endohedral fullerene Y3N@C80 exhibits luminescence with reasonable quantum yield and extraordinary long lifetime. By variable-temperature steady-state and time-resolved luminescence spectroscopy, it is demonstrated that above 60 K the Y3N@C80 exhibits thermally activated delayed fluorescence with maximum emission at 120 K and a negligible prompt fluorescence. Below 60 K, a phosphorescence with a lifetime of 192±1 ms is observed. Spin distribution and dynamics in the triplet excited state is investigated with X- and W-band EPR and ENDOR spectroscopies and DFT computations. Finally, electroluminescence of the Y3N@C80/PFO film is demonstrated opening the possibility for red-emitting fullerene-based organic light-emitting diodes (OLEDs)
"To Chat-GPT or not to Chat-GPT":Navigating the paradoxes of generative AI in the advertising industry
Generative AI technology is evoking both excitement and fear about its potential impact across a host of industries—including advertising, where it is expected to have a significant disruptive effect. This article utilizes the paradox lens to explore the implications of text-to-text generative AI in the form of ChatGPT for the advertising industry. Drawing on 48 interviews with advertising professionals, we identify three operational paradoxes that are associated with conducting research, creativity, efficiency, and one psychological paradox related to work identity. To gain a competitive advantage, we urge practitioners to adopt a confrontation-based coping strategy to navigate these paradoxes. This can be mobilized via an ambidexterity or contingency paradox management approach. We outline specific tactics in this article.</p
The RNA workbench: Best practices for RNA and high-throughput sequencing bioinformatics in Galaxy
RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis
Recommended from our members
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample
We present measurements of galaxy clustering from the Baryon Oscillation
Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III
(SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains
264,283 massive galaxies covering 3275 square degrees with an effective
redshift z=0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance
Lambda-CDM cosmological model, this sample covers an effective volume of 2.2
Gpc^3, and represents the largest sample of the Universe ever surveyed at this
density, n = 3 x 10^-4 h^-3 Mpc^3. We measure the angle-averaged galaxy
correlation function and power spectrum, including density-field reconstruction
of the baryon acoustic oscillation (BAO) feature. The acoustic features are
detected at a significance of 5\sigma in both the correlation function and
power spectrum. Combining with the SDSS-II Luminous Red Galaxy Sample, the
detection significance increases to 6.7\sigma. Fitting for the position of the
acoustic features measures the distance to z=0.57 relative to the sound horizon
DV /rs = 13.67 +/- 0.22 at z=0.57. Assuming a fiducial sound horizon of 153.19
Mpc, which matches cosmic microwave background constraints, this corresponds to
a distance DV(z=0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most
precise distance constraint ever obtained from a galaxy survey. We place this
result alongside previous BAO measurements in a cosmological distance ladder
and find excellent agreement with the current supernova measurements. We use
these distance measurements to constrain various cosmological models, finding
continuing support for a flat Universe with a cosmological constant.Comment: 33 page
RNAalifold: improved consensus structure prediction for RNA alignments
<p>Abstract</p> <p>Background</p> <p>The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach.</p> <p>Results</p> <p>We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets.</p> <p>Conclusion</p> <p>The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.</p
Recommended from our members
Freiburg RNA tools: a central online resource for RNA-focused research and teaching.
The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de
- …