644 research outputs found

    Two-Photon Pathway to Ultracold Ground State Molecules of 23^{23}Na40^{40}K

    Full text link
    We report on high-resolution spectroscopy of ultracold fermionic \nak~Feshbach molecules, and identify a two-photon pathway to the rovibrational singlet ground state via a resonantly mixed \Bcres intermediate state. Photoassociation in a 23^{23}Na-40^{40}K atomic mixture and one-photon spectroscopy on \nak~Feshbach molecules reveal about 20 vibrational levels of the electronically excited \ctrip state. Two of these levels are found to be strongly perturbed by nearby \Bsing states via spin-orbit coupling, resulting in additional lines of dominant singlet character in the perturbed complex {B1Πv=4c3Σ+v=25{\rm B}^1\Pi |v{=}4\rangle {\sim} {\rm c}^3\Sigma^+ | v{=}25\rangle}, or of resonantly mixed character in {B1Πv=12c3Σ+v=35{\rm B}^1\Pi | v{=}12 \rangle {\sim}{\rm c}^3\Sigma^+ | v{=}35 \rangle}. The dominantly singlet level is used to locate the absolute rovibrational singlet ground state X1Σ+v=0,J=0{\rm X}^1\Sigma^+ | v{=}0, J{=}0 \rangle via Autler-Townes spectroscopy. We demonstrate coherent two-photon coupling via dark state spectroscopy between the predominantly triplet Feshbach molecular state and the singlet ground state. Its binding energy is measured to be 5212.0447(1) \cm, a thousand-fold improvement in accuracy compared to previous determinations. In their absolute singlet ground state, \nak~molecules are chemically stable under binary collisions and possess a large electric dipole moment of 2.722.72 Debye. Our work thus paves the way towards the creation of strongly dipolar Fermi gases of NaK molecules.Comment: 23 pages, 8 figure

    Ultracold Dipolar Gas of Fermionic 23^{23}Na40^{40}K Molecules in their Absolute Ground State

    Full text link
    We report on the creation of an ultracold dipolar gas of fermionic 23^{23}Na40^{40}K molecules in their absolute rovibrational and hyperfine ground state. Starting from weakly bound Feshbach molecules, we demonstrate hyperfine resolved two-photon transfer into the singlet X1Σ+v=0,J=0{\rm X}^1\Sigma^+ |v{=}0,J{=}0\rangle ground state, coherently bridging a binding energy difference of 0.65 eV via stimulated rapid adiabatic passage. The spin-polarized, nearly quantum degenerate molecular gas displays a lifetime longer than 2.5 s, highlighting NaK's stability against two-body chemical reactions. A homogeneous electric field is applied to induce a dipole moment of up to 0.8 Debye. With these advances, the exploration of many-body physics with strongly dipolar Fermi gases of 23^{23}Na40^{40}K molecules is in experimental reach.Comment: 5 pages, 5 figure

    Coherent Microwave Control of Ultracold 23^{23}Na40^{40}K Molecules

    Get PDF
    We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable 23^{23}Na40^{40}K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, J=1J{=}1, we observe collisional lifetimes of more than 3s3\, \rm s, comparable to those in the rovibrational ground state, J=0J{=}0. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements and quantum information processing.Comment: 5 pages, 4 figure

    Trapping of Ultracold Atoms in a Hollow-core Photonic Crystal Fiber

    Full text link
    Ultracold sodium atoms have been trapped inside a hollow-core optical fiber. The atoms are transferred from a free space optical dipole trap into a trap formed by a red-detuned gaussian light mode confined to the core of the fiber. We show that at least 5% of the atoms held initially in the free space trap can be loaded into the core of the fiber and retrieved outside.Comment: 4 pages, 3 figures, corrected author list, added refs, changed figs, changed content, accepted by PR

    "To Chat-GPT or not to Chat-GPT":Navigating the paradoxes of generative AI in the advertising industry

    Get PDF
    Generative AI technology is evoking both excitement and fear about its potential impact across a host of industries—including advertising, where it is expected to have a significant disruptive effect. This article utilizes the paradox lens to explore the implications of text-to-text generative AI in the form of ChatGPT for the advertising industry. Drawing on 48 interviews with advertising professionals, we identify three operational paradoxes that are associated with conducting research, creativity, efficiency, and one psychological paradox related to work identity. To gain a competitive advantage, we urge practitioners to adopt a confrontation-based coping strategy to navigate these paradoxes. This can be mobilized via an ambidexterity or contingency paradox management approach. We outline specific tactics in this article.</p

    The RNA workbench: Best practices for RNA and high-throughput sequencing bioinformatics in Galaxy

    Get PDF
    RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis

    RNAalifold: improved consensus structure prediction for RNA alignments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach.</p> <p>Results</p> <p>We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets.</p> <p>Conclusion</p> <p>The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.</p
    corecore