118 research outputs found

    Evaluation of different drug classes on transient sciatic nerve injury-depressed marble burying in mice

    Get PDF
    A great need exists for the identification of new effective analgesics to treat sustained pain. However, most preclinical nociceptive assays measure behavioral responses evoked by noxious stimuli (i.e., pain-stimulated behavior), which presents a challenge to distinguish between motor impairing and antinociceptive effects of drugs. Here, we demonstrate that chronic constriction injury of the sciatic nerve (CCI) elicits common pain-stimulated responses (i.e., mechanical allodynia and thermal hyperalgesia) as well as reduces marble burying/digging behaviors that occur during the early stages of the neuropathy and resolve within one week. Whereas drugs representing distinct classes of analgesics (i.e., morphine, valdecoxib, and gabapentin) reversed both CCI-induced and CCI-depressed nociceptive measures, diazepam lacked antinociceptive effects in all assays and the kappa opioid receptor agonist U69593 reversed pain-stimulated, but not pain-depressed behaviors. In addition, we tested drugs targeting distinct components of the endocannabinoid system, including agonists at cannabinoid receptors type 1 (CB1) and type 2 (CB2), as well as inhibitors of the endocannabinoid regulating enzymes fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL). Each of these drugs reversed all CCI-induced nociceptive measures, with the exception of the FAAH inhibitor that reversed pain-stimulated behaviors, only. These findings support the use of the mouse marble-burying assay as a model of pain-depressed behavior within the first week of sciatic nerve injury to examine candidate analgesics. These data also support existing preclinical research that cannabinoid receptor agonists and inhibitors of endocannabinoid regulating enzymes merit consideration for the treatment of pain.Molecular Physiolog

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of 76Ge

    Get PDF
    Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the 0νββ decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment

    The Majorana Demonstrator: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

    Get PDF
    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0vββ) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 t-1 y-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0vββ [1]; and performing a direct search for light WIMPs (3-10 GeV/c2)

    The MAJORANA experiment: An ultra-low background search for neutrinoless double-beta decay

    Get PDF
    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the MAJORANA experiment, known as the DEMONSTRATOR, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak

    Characteristics of signals originating near the lithium-diffused N+ contact of high purity germanium p-type point contact detectors

    Get PDF
    A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein
    corecore