60 research outputs found

    DIABRISK - SL Prevention of cardio-metabolic disease with life style modification in young urban Sri Lankan's - study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urban South-Asian's are predisposed to early onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). There is an urgent need for country specific primary prevention strategies to address the growing burden of cardio-metabolic disease in this population. The aim of this clinical trial is to evaluate whether intensive (3-monthly) lifestyle modification advice is superior to a less-intensive (12 monthly; control group) lifestyle modification advice on a primary composite cardio-metabolic end point in 'at risk' urban subjects aged between 5-40 years.</p> <p>Methods/Design</p> <p>This is an open randomised controlled parallel group clinical trial performed at a single centre in Colombo, Sri-Lanka. A cluster sampling strategy was used to select a large representative sample of subjects aged between 5-40 years at high risk of T2DM and CVD for the intervention study. We have screened 23,298 (males 47% females 53%) healthy subjects for four risk factors: obesity, elevated waist circumference, family history of diabetes and physical inactivity, using a questionnaire and anthropometry. Those with two or more risk-factors were recruited to the intervention trial. We aim to recruit 4600 subjects for the intervention trial. The primary composite cardio-metabolic end point is; new onset T2DM, impaired glucose tolerance, impaired fasting glycaemia, new onset hypertension and albuminuria, following 5 years of intervention. The effect of the intervention on pre-specified secondary endpoints will also be evaluated. The study will be conducted according to good clinical and ethical practice, data analysis and reporting guidelines.</p> <p>Discussion</p> <p>DIABRISK-SL is a large population based trial to evaluate the prevalence of diabetes, pre-diabetes and cardio-metabolic risk factors among young urban Sri-Lankans and the effect of a primary prevention strategy on cardio-metabolic disease end points. This work will enable country specific and regional cardio-metabolic risk scores to be derived. Further if the proposed intervention is successful the results of this study can be translated and implemented as a low-cost primary prevention tool in Sri-Lanka and other low/middle income developing countries.</p> <p>Trial registration</p> <p>The trial is registered with the World Health Organisation and Sri-Lanka clinical trial registry number SLCTR/2008/003</p

    Latent Thermal Energy Storage Technologies and Applications: A Review

    Get PDF
    The achievement of European climate energy objectives which are contained in the European Union's (EU) “20-20-20” targets and in the European Commission's (EC) Energy Roadmap 2050 is possible, among other things, through the use of energy storage technologies. The use of thermal energy storage (TES) in the energy system allows to conserving energy, increase the overall efficiency of the systems by eliminating differences between supply and demand for energy. The article presents different methods of thermal energy storage including sensible heat storage, latent heat storage and thermochemical energy storage, focusing mainly on phase change materials (PCMs) as a form of suitable solution for energy utilisation to fill the gap between demand and supply to improve the energy efficiency of a system . PCMs allow the storage of latent thermal energy during phase change at almost stable temperature. The article presents a classification of PCMs according to their chemical nature as organic, inorganic and eutectic and by the phase transition with their advantages and disadvantages. In addition, different methods of improving the effectiveness of the PCM materials such as employing cascaded latent heat thermal energy storage system, encapsulation of PCMs and shape-stabilisation are presented in the paper. Furthermore, the use of PCM materials in buildings, power generation, food industry and automotive applications are presented and the modelling tools for analysing the functionality of PCMs materials are compared and classified

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Electrospun polyurethane-core and gelatin-shell coaxial fibre coatings for miniature implantable biosensors

    Get PDF
    Розроблено методи оптимізації управління організаційними системи на основі типології діяльності агентів шляхом модифікації теорії кооперативних ігор. Описано новий тип ігор – ігри із зміною інформації. Результати сформульовані у вигляді сукупності теорем

    Electrospun polyurethane-core and gelatin-shell coaxial fibre coatings for miniature implantable biosensors

    No full text
    The aim of this study was to introduce bioactivity to the electrospun coating for implantable glucose biosensors. Coaxial fibre membranes having polyurethane as the core and gelatin as the shell were produced using a range of polyurethane concentrations (2, 4, 6 and 8% wt/v) while keeping gelatin concentration (10% wt/v) constant in 2,2,2-trifluoroethanol. The gelatin shell was stabilized using glutaraldehyde vapour. The formation of core–shell structure was confirmed using transmission/scanning electron microscopy and FTIR. The coaxial fibre membranes showed uniaxial tensile properties intermediate to that of the pure polyurethane and the gelatin fibre membranes. The gelatin shell increased hydrophilicity and glucose transport flux across the coaxial fibre membranes. The coaxial fibre membranes having small fibre diameter (541 nm) and a thick gelatin shell (52%) did not affect the sensor sensitivity, but decreased sensor's linearity in the long run. In contrast, thicker coaxial fibre membranes (1133 nm) having a thin gelatin shell (34%) maintained both sensitivity and linearity for the 84 days of the study period. To conclude, polyurethane-gelatin coaxial fibre membranes, due to their faster permeability to glucose, tailorable mechanical properties and bioactivity, are potential candidates for coatings to favourably modify the host responses to extend the reliable in vivo lifetime of implantable glucose biosensors.https://pubmed.ncbi.nlm.nih.gov/24346001
    corecore