59 research outputs found

    Tracing the evolutionary trajectory of verbal working memory with neuro-archaeology

    Get PDF
    We used optical neuroimaging to explore the extent of functional overlap between working memory (WM) networks involved in language and Early Stone Age toolmaking behaviors. Oldowan tool production activates two verbal WM areas, but the functions of these areas are indistinguishable from general auditory WM, suggesting that the first hominin toolmakers relied on early precursors of verbal WM to make simple flake tools. Early Acheulian toolmaking elicits activity in a region bordering on Broca's area that is involved in both visual and verbal WM tasks. The sensorimotor and mirror neurons in this area, along with enhancement of general WM capabilities around 1.8 million years ago, may have provided the scaffolding upon which a WM network dedicated to processing exclusively linguistic information could evolve. In the road map going forward, neuro-archaeologists should investigate the trajectory of WM over the course of human evolution to better understand its contribution to language origins

    Validating a new methodology for optical probe design and image registration in fNIRS studies

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing

    Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity

    Get PDF
    Visual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3–4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity. Here, we capitalized on recent work showing that capacity is lower for more complex stimulus dimension. In particular, we asked whether individual differences in capacity remain consistent if capacity is shifted by a more demanding task, and, further, whether the correspondence between behavioral and neural measures holds across a shift in VWM capacity. Participants completed a change detection (CD) task with simple colors and complex shapes in an fMRI experiment. As expected, capacity was significantly lower for the shape dimension. Moreover, there were robust individual differences in behavioral estimates of VWM capacity across dimensions. Similarly, participants with a stronger BOLD response for color also showed a strong neural response for shape within the lateral occipital cortex, intraparietal sulcus (IPS), and superior IPS. Although there were robust individual differences in the behavioral and neural measures, we found little evidence of systematic brain-behavior correlations across feature dimensions. This suggests that behavioral and neural measures of capacity provide different views onto the processes that underlie VWM and CD. Recent theoretical approaches that attempt to bridge between behavioral and neural measures are well positioned to address these findings in future work

    Prefrontal cortex activation supports the emergence of early stone age toolmaking skill

    Get PDF
    Trends toward encephalization and technological complexity ∼1.8 million years ago may signify cognitive development in the genus Homo. Using functional near-infrared spectroscopy, we measured relative brain activity of 33 human subjects at three different points as they learned to make replicative Oldowan and Acheulian Early Stone Age tools. Here we show that the more complex early Acheulian industry recruits left dorsolateral prefrontal cortex when skills related to this task are first being learned. Individuals with increased activity in this area are the most proficient at the Acheulian task. The Oldowan task, on the other hand, transitions to automatic processing in less than 4 h of training. Individuals with increased sensorimotor activity demonstrate the most skill at this task. We argue that enhanced working memory abilities received positive selection in response to technological needs during the early Pleistocene, setting Homo on the path to becoming human

    Early adversity in rural India impacts the brain networks underlying visual working memory

    Get PDF
    There is a growing need to understand the global impact of poverty on early brain and behavioural development, particularly with regard to key cognitive processes that emerge in early development. Although the impact of adversity on brain development can trap children in an intergenerational cycle of poverty, the massive potential for brain plasticity is also a source of hope: reliable, accessible, culturally-agnostic methods to assess early brain development in low resource settings might be used to measure the impact of early adversity, identify infants for timely intervention, and guide the development and monitor the effectiveness of early interventions. Visual working memory (VWM) is an early marker of cognitive capacity that has been assessed reliably in early infancy and is predictive of later academic achievement in Western countries. Here, we localized the functional brain networks that underlie VWM in early development in rural India using a portable neuroimaging system, and we assessed the impact of adversity on these brain networks. We recorded functional brain activity as young children aged 18-207 weeks performed a visual working memory task. Brain imaging results revealed localized activation in the frontal cortex, replicating findings from a midwestern US sample. Critically, children from families with low maternal education and income showed weaker brain activity and poorer distractor suppression in canonical working memory areas in the left frontal cortex. Implications of this work are far-reaching: it is now cost-effective to localize functional brain networks in early development in low-resource settings, paving the way for novel intervention and assessment methods

    Evaluating motion processing algorithms for use with functional near-infrared spectroscopy data from young children

    Get PDF
    Motion artifacts are often a significant component of the measured signal in functional near-infrared spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address this issue, including principal components analysis (PCA), correlation-based signal improvement (CBSI), wavelet filtering, and spline interpolation. The efficacy of these techniques has been compared using simulated data; however, our understanding of how these techniques fare when dealing with task-based cognitive data is limited. Brigadoi et al. compared motion correction techniques in a sample of adult data measured during a simple cognitive task. Wavelet filtering showed the most promise as an optimal technique for motion correction. Given that fNIRS is often used with infants and young children, it is critical to evaluate the effectiveness of motion correction techniques directly with data from these age groups. This study addresses that problem by evaluating motion correction algorithms implemented in HomER2. The efficacy of each technique was compared quantitatively using objective metrics related to the physiological properties of the hemodynamic response. Results showed that targeted PCA (tPCA), spline, and CBSI retained a higher number of trials. These techniques also performed well in direct head-to-head comparisons with the other approaches using quantitative metrics. The CBSI method corrected many of the artifacts present in our data; however, this approach produced sometimes unstable HRFs. The targeted PCA and spline methods proved to be the most robust, performing well across all comparison metrics. When compared head to head, tPCA consistently outperformed spline. We conclude, therefore, that tPCA is an effective technique for correcting motion artifacts in fNIRS data from young children

    Standardising an infant fNIRS analysis pipeline to investigate neurodevelopment in global health

    Get PDF
    Data analysis methods for infant fNIRS data in global health are not standardised yet. This work proposes an analysis pipeline that improves the quality of the recovered HRF for use by other researchers in this field

    The impact of caregiver inhibitory control on infant visual working memory

    Get PDF
    Visual working memory (VWM) emerges in the first year of life and has far-reaching implications for academic and later life outcomes. Given that caregivers play a significant role in shaping cognitive function in children, it is important to understand how they might impact VWM development as early as infancy. The current study investigated whether caregivers’ efficiency of regulating inhibitory control was associated with VWM function in their infants. Eighty-eight caregivers were presented with a Go-NoGo task to assess inhibitory control. An efficiency score was calculated using their behavioural responses. Eighty-six 6-to-10-month-old infants were presented with a preferential looking task to assess VWM function. VWM load was manipulated across one (low load), two (medium load) and three (high load) items. Functional near-infrared spectroscopy was used to record brain activation from caregivers and their infants. We found no direct association between caregiver efficiency and infant VWM behaviour. However, we found an indirect association - caregiver efficiency was linked to infant VWM through left-lateralized fronto-parietal engagement. Specifically, infants with low efficiency caregivers showed decreasing left-lateralized parietal engagement with increasing VWM performance at the medium and high loads compared to infants with high efficiency caregivers, who did not show any load- or performance-dependent modulation. Our findings contribute to a growing body of literature examining the role that caregivers play in early neurocognitive development

    A fNIRS investigation of speech planning and execution in adults who stutter

    Get PDF
    Our study aimed to determine the neural correlates of speech planning and execution in adults who stutter (AWS). Fifteen AWS and 15 controls (CON) completed two tasks that either manipulated speech planning or execution processing loads. Functional near-infrared spectroscopy (fNIRS) was used to measure changes in blood flow concentrations during each task, thus providing an indirect measure of neural activity. An image-based reconstruction technique was used to analyze the results and facilitate their interpretation in the context of previous functional neuroimaging studies of AWS that used positron emission tomography (PET) or functional magnetic resonance imaging (fMRI). For planning, we compared neural activity associated with high versus low planning load in AWS and CON. For execution, we compared the neural activity associated with overt versus covert naming in AWS and CON. Broadly, group level effects corroborate previous PET/fMRI findings including under-activation in lefthemisphere perisylvian speech-language networks and over-activation in righthemisphere homologues. Increased planning load revealed atypical left-hemisphere activation in AWS, whereas increased execution load yielded atypical right frontotemporo-parietal and bilateral motor activation in AWS. Our results add to the limited literature differentiating speech planning versus execution processes in AWS

    Modulating perceptual complexity and load reveals degradation of the visual working memory network in ageing

    Get PDF
    Previous neuroimaging studies have reported a posterior to anterior shift of activation in ageing (PASA). Here, we explore the nature of this shift by modulating load (1,2 or 3 items) and perceptual complexity in two variants of a visual working memory task (VWM): a ‘simple’ color and a ‘complex’ shape change detection task. Functional near-infrared spectroscopy (fNIRS) was used to record changes in activation in younger (N=24) and older adults (N=24). Older adults exhibited PASA by showing lesser activation in the posterior cortex and greater activation in the anterior cortex when compared to younger adults. Further, they showed reduced accuracy at loads 2 and 3 for the simple task and across all loads for the complex task. Activation in the posterior and anterior cortices was modulated differently for younger and older adults. In older adults, increasing load in the simple task was accompanied by decreasing activation in the posterior cortex and lack of modulation in the anterior cortex, suggesting the inability to encode and/or maintain representations without much aid from higher-order centers. In the complex task, older adults recruited verbal working memory areas in the posterior cortex, suggesting that they used adaptive strategies such as labelling the shape stimuli. This was accompanied by reduced activation in the anterior cortex reflecting the inability to exert top-down modulation to typical VWM areas in the posterior cortex to improve behavioral performance
    • …
    corecore