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Abstract. Motion artifacts are often a significant component of the measured signal in functional near-infrared
spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address this issue, including
principal components analysis (PCA), correlation-based signal improvement (CBSI), wavelet filtering, and spline
interpolation. The efficacy of these techniques has been compared using simulated data; however, our under-
standing of how these techniques fare when dealing with task-based cognitive data is limited. Brigadoi et al.
compared motion correction techniques in a sample of adult data measured during a simple cognitive task.
Wavelet filtering showed the most promise as an optimal technique for motion correction. Given that fNIRS
is often used with infants and young children, it is critical to evaluate the effectiveness of motion correction tech-
niques directly with data from these age groups. This study addresses that problem by evaluating motion cor-
rection algorithms implemented in HomER2. The efficacy of each technique was compared quantitatively using
objective metrics related to the physiological properties of the hemodynamic response. Results showed that
targeted PCA (tPCA), spline, and CBSI retained a higher number of trials. These techniques also performed
well in direct head-to-head comparisons with the other approaches using quantitative metrics. The CBSI method
corrected many of the artifacts present in our data; however, this approach produced sometimes unstable HRFs.
The targeted PCA and spline methods proved to be the most robust, performing well across all comparison
metrics. When compared head to head, tPCA consistently outperformed spline. We conclude, therefore,
that tPCA is an effective technique for correcting motion artifacts in fNIRS data from young children. © 2018
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Functional near-infrared spectroscopy (fNIRS) measures the
absorption and scattering of photons as near-infrared light
passes through brain tissue, allowing measurement of changes
in localized hemodynamic responses in the cortex. It specifically
monitors changes in intensity as near-infrared light is passed
through tissue from a source to a detector. fNIRS has been
widely used to investigate the neural processes that underlie
multiple cognitive abilities across development and is becoming
a tool of choice when studying challenging populations includ-
ing infants, young children, and clinical patients who cannot
be easily studied with functional magnetic resonance imaging
(fMRI).1–11 Despite recent advances in methodological and ana-
lytical tools for use with fNIRS data, questions remain regarding
the optimal method for removing motion artifacts from the
measured signal.

Motion artifacts are often a significant component of the
measured fNIRS signal. This is due to the fact that movement
can cause transient displacements of the source/detector optodes
on the scalp that are reflected in the time series. The speed and
strength of movement as well as the tolerance of the probes to
this motion play a role in how these artifacts are reflected in the

signal. Motion artifacts are highly variable and often complex.
They can be generally classified as spikes, baseline shifts, and
low-frequency variations.12 They take many forms that can
appear as isolated, high amplitude events (spikes), or pervasive
low-frequency events that are temporally correlated with the
measured hemodynamic response and therefore hard to detect
and correct for. To estimate the true response, however, it is
crucial that motion artifacts are detected and removed.

A variety of methods have been proposed to address
this issue. Some include the addition of complementary
measurements such as short-separation channels13,14 or an
accelerometer.15–17 These methods provide a direct measure
of the artifacts making it possible to regress these artifacts
from the measured signal of interest. Alternative approaches
include detecting optode fluctuations prior to data collection
to prevent unstable and weak connections that would result
in motion artifacts.18 Other approaches take into consideration
spatial and/or temporal features of the measured signal and serve
as post-processing techniques. Among these approaches are
principal component analysis (PCA),19 Kalman filtering,20 cor-
relation-based signal improvement (CBSI),21 wavelet filtering,22

spline interpolation,23 autoregressive algorithms,24 and more
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recently, a kurtosis-based wavelet algorithm,25 empirical mode
decomposition (EMD),26 and an optical model on the influence
of optode fluctuation on the fNIRS signal.27

Several papers have explored the efficacy of different motion
correction techniques for fNIRS data.12,17,25–32 The majority of
these reports have investigated this problem by adding a simu-
lated hemodynamic response to resting-state data. Recently,
Chiarelli et al.25 introduced a kurtosis-based wavelet algorithm
that proved to be more efficient in removing motion artifacts
when compared with other techniques in a resting-state dataset.
Additionally, Gu and colleagues26 introduced the EMD
approach, which is adaptive and data-driven. This approach
performed well when compared with spline, Wavelet, and
kurtosis-based wavelet in a resting-state dataset by increasing
the signal-to-noise ratio and decreasing the mean squared error.

Only two studies have used real, task-based data.12,30

Comparison of the techniques has shown that the most effective
methods for motion correction are wavelet filtering,12,28 spline
interpolation,28 and targeted PCA (tPCA).32 Critically, the com-
plexity of motion artifacts makes it likely that the efficacy of
motion correction techniques is data-dependent.12 Consistent
with this, several recent studies have found that wavelet filtering
is a promising technique for motion correction; however, the
specific type of wavelet filtering that is optimal differs across
cohorts and data types. Brigadoi et al.12 quantitatively compared
six motion correction techniques in a sample of adult data
measured during a simple cognitive task. They concluded
that wavelet filtering showed the most promise as an optimal
technique for motion correction. Hu et al.30 reported that a com-
bination of wavelet and a moving average yielded the best
results in a study of 9- to 12-year-old children.

In the present study, we compared the performance of
multiple motion correction techniques as implemented in the
HomER2 analysis package33 using fNIRS data from a cognitive
task with young children. The study was unique in two ways.
First, our understanding of how motion correction techniques
fare when dealing with task-based cognitive data is limited.
In the present study, we examined fNIRS data from a study
of visual working memory (VWM) where children had to
explicitly compare multiple items from a sample and test array.
Second, no previous studies have compared motion correction
techniques with fNIRS data from young children. Young chil-
dren are much more likely to move during data collection,
resulting in far noisier data than data from adult participants
with motion artifacts distributed throughout the time series.
They also routinely engage in jerky movements that can result
in more motion epochs and yield artifacts that are faster and
of greater amplitude relative to adults. Furthermore, because
fNIRS is often used with infants and young children, it is critical
to evaluate the effectiveness of motion correction techniques
directly with data from these age groups. Thus, we investigated
whether the conclusions reached by Brigadoi et al.12 extend to
data from young children. To address this question, we com-
pared spline interpolation, PCA, tPCA, Wavelet filtering, and
CBSI on data acquired during a working memory paradigm with
3- and 4-year-old children.

Note that some adult populations, such as adults with epi-
lepsy, might also produce many motion artifacts. Thus, the
issues explored here may be relevant to some adult populations
as well. In this context, we note that Selb and colleagues31

reported that the best approach to minimize the effects of motion
artifacts on oscillation fNIRS data from healthy subjects and

stroke patients is to correct motion artifacts using a spline
interpolation, apply bandpass filtering, and then discard the
epochs that were originally identified as containing motion
artifacts. We did not evaluate this approach here because data
collection with infants, children, and clinical populations often
results in quite limited data; consequently, discarding segments
of data is not an optimal approach to denoise the optical signal.

1 Methods

1.1 Participants

Eleven 3.5-year-old (M ¼ 3.5 y, SD ¼ 0.06) and 14 4.5-year-
old (M ¼ 4.51 y, SD ¼ 0.08) participated in the study, after
parents provided informed consent. Children were recruited
from a participant registry maintained by the Department of
Psychology at a Midwestern University in the United States.
Parents were sent a letter inviting them to participate and
then received a follow-up phone call. All children had normal
or corrected-to-normal vision. The study was approved by the
University’s Institutional Review Board.

1.2 Materials and Procedure

Each participant was seated in front of a 46-in. LCD television
that was connected to a PC running E-Prime (Psychology
Software Tools, Pittsburgh, Pennsylvania). The paradigm con-
sisted of a change detection task34 (Fig. 1). In this task, partic-
ipants are presented with a sample array of one to three colored
squares, after which there is a 1-s delay, and then a test array
appears in which either all the objects match the memory
array, or the feature (i.e., color) of one object is changed to a
new value. The test display remained on the screen until children
provided a verbal response (i.e., “same” or “different”) that the
experimenter entered using a keyboard. After each trial, there
was a random intertrial interval. These intervals consisted of
a blank 1 s (50% of trials), 2 s (25% of trials), or 4 s (25%
of trials) delay followed by the appearance of a fixation dot.
The next trial began once the experimenter pushed a button
indicating that the participant was attending to the fixation dot.

Fig. 1 Change detection task. Sequence of events during a trial.
Each trial began with an auditory prompt saying, “Let’s look for color
changes!” along with a fixation circle on the left or right side of the
screen that preceded where the target stimuli appeared. The experi-
menter initiated the trial when the child was ready. The sample array
then appeared on the screen for 2 s, followed by a blank interval of 1 s.
The test array was then presented until the child verbally responded
“same” or “different.” The experimenter entered the child’s response
on a keyboard.
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On average, the total duration of the interval between trials was
12.3 s (SD = 8.23 s; range varied from 2.23 to 53.32 s).

There were six conditions in the experimental design:
children were asked to remember 1, 2, or 3 items (set sizes, SS,
1 to 3) and the trials either contained a change or did not
(same, different). Participants came in for two sessions and
completed 24 trials per condition.

1.3 Functional Near-Infrared Spectroscopy Data

fNIRS data were collected at 50 Hz using a TechEn CW6 system
with 690- and 830-nm wavelengths. Near-infrared light was
delivered via 12 fiber optic cables (sources) to the participant’s
scalp and detected by 20 fiber optic cables (detectors) spaced
into four arrays embedded in a cap. Each array contained
three sources and five detectors placed over the frontal, tempo-
ral, and parietal cortices bilaterally to tap target regions of inter-
est (ROI). Figure 2 shows views of the probe geometry (see
Wijeakumar et al.35 for details). There were a total of 36 chan-
nels, which formed part of an optimized probe geometry using
ROIs from the fMRI VWM literature.30 ROIs included right
superior intraparietal sulcus, bilateral intraparietal sulcus, bilat-
eral anterior intraparietal sulcus, bilateral ventral occipital cor-
tex, bilateral dorsolateral prefrontal cortex, left superior frontal
gyrus, bilateral inferior frontal gyrus (IFG), frontal eye fields,

bilateral middle frontal gyrus, bilateral occipital, and bilateral
temporoparietal junction.

To account for variations in head size across participants,
source–detector distances were scaled relative to the head cir-
cumference using the 10 to 20 system; thus, the source–detector
distance ranged from 25 to 27 mm.35

At the beginning of each session, each participants’ head cir-
cumference was measured and the appropriate fNIRS cap was
selected. Prior to the experimental task, children were fitted with
a custom EEG cap that contained grommets to secure the fiber
optics to the scalp. Experimenters then cleared out hair that
could obstruct the optical signal. Sources and detectors were
then fitted into grommets onto the child’s head, and secured
using an elastic band to limit optode fluctuation as a result of
participant movement. The source and detector gains were
adjusted to optimize signal quality prior to starting the experi-
mental procedures. Optode positions were recorded in three-
dimensions using a Polhemus Patriot system before the task.

The data acquired during this experiment contained a variety
of motion artifacts. Figure 3 shows an example of the artifacts
present in one representative subject’s data. Artifacts were gen-
erated by the participants’mouth and jaw movements when they
gave verbal responses or talked spontaneously as well as by a
variety of head and body movements. Figure 4 shows an excerpt
of the session video that illustrates some of the movements

(a) (b)

Fig. 2 Probe geometry. Panel A shows two views of the probe geometry. Red diamonds depict sources
and blue circles depict detectors, whereas yellow lines represent the channels. Figure was created using
AtlasviewerGUI (HOMER2, Massachusetts General Hospital/Harvard Medical School, Massachusetts).
Panel B shows a schematic of the left side view of the probe.

Fig. 3 Motion artifacts. Example motion artifacts (highlighted in pink) present during a segment of the
time series for one channel for one participant. The red line shows the 690-nm wavelength, whereas the
830-nm wavelength is shown in blue. Vertical lines depict the onset of a trial (i.e., timepoint 0). The figure
shows the raw time series, before any motion correction is applied and before bandpass filtering.
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Fig. 4 Examples of motion artifacts (highlighted in pink for the parameters used in stage 1 and yellow for
the revised parameters) present during a segment of the time series for one channel for one participant.
The red line shows the 690-nm wavelength, whereas the 830-nm wavelength is shown in blue. Vertical
lines depict the onset of a trial (i.e., time point 0). The bottom panel shows an excerpt of this participant’s
behavior while completing the task.
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participants routinely engaged on while completing the task. In
particular, the images show how the participant moves his head
while changing his line of focus from the display to the experi-
menter. Note that this period likely included talking with the
experimenter. Similarly, the figure also shows how the partici-
pant moves back-and-forth while the trial is on. Not all partic-
ipants had artifacts of the same type and magnitude, likely
because they engaged in slightly different behaviors and had dif-
ferent physical characteristics. However, moving back and forth,
changing focus from the display to the experimenter and talking
were behaviors that are likely present across all participants.
The shape and duration of the artifacts were also variable,
although many were fast, high-amplitude artifacts. Such individ-
ual differences are unavoidable with young children and pose
a great challenge when trying to detect and remove motion
artifacts using the same method across participants.

1.4 Motion Correction Techniques

1.4.1 Spline interpolation

This method is a channel-by-channel approach based on
Scholkmann et al.23 As it is implemented on HomER2,33 this
algorithm acts on motion artifacts that have been previously
detected; therefore, it is dependent upon having a good motion
detection algorithm. Artifacts are modeled using cubic spline
interpolation, which is then subtracted from the original time-
series to correct for motion artifacts. The time-series is then
reconstructed and normalized by shifting the corrected segments
by a value given by the combination of the mean value of the
segment and the mean value of the previous segment to ensure
a continuous signal. For a more detailed description, see
Scholkmann et al.23 The interpolation depends on a parameter,
which determines the degree of the spline function. In this study,
the parameter was set to 0.99 to be consistent with previous
studies.12,23,28

1.4.2 Principal components analysis

This method applies an orthogonal transformation to decompose
the original signal into uncorrelated components based on the
amount of variance accounted for by each component. The
first components account for the largest proportion of variance
and are assumed to represent the motion artifacts as these epochs
are characterized by large changes in amplitude and a high
degree of variability. Therefore, removing the first components
should correct for motion artifacts.19

The performance of this technique is highly dependent on
both the number of measurements available and the number
of components removed. Cooper et al.28 suggested that PCA
performs optimally when removing 97% of the total variance;
thus, we used this value. Following the suggestion of Brigadoi
et al.12 that 97% was too high, we also performed the correction
using 80%. Results for both parameters were very similar; thus,
we only include the results for 97% in this report. We also
employed a targeted principal component analysis (tPCA),32

which applies a similar PCA filter but only on segments previ-
ously identified as motion artifact. Thus, similar to the spline
interpolation method described above, this technique relies
on a motion detection algorithm. The corrected motion epochs
are then reintroduced to the time series by shifting the corrected
segments by a value given by the combination of the mean value
of the segment and the mean value of the previous segment to

ensure a continuous signal, identical to the procedure employed
in the spline interpolation correction method. This procedure
was repeated five times to identify and correct any residual
artifacts.

1.4.3 Wavelet filtering

This method is a channel-by-channel approach that follows
the one proposed by Molavi and Dumont.22 It relies on the
differences in amplitude and duration between motion artifacts
and the measured signal of interest.22 As a first step, the signal is
expanded using a discrete wavelet transform after which motion
artifacts appear as isolated large coefficients. The goal is to
remove those coefficients that are not likely to be an outcome
of the distribution of wavelet coefficients.

The measured signal is assumed to be a sum of the physio-
logical signal of interest and an interference term. The distribu-
tion of wavelet coefficients is a mixture of Gaussians.36,37

Within this method, the wavelet distribution is assumed to
have a single Gaussian probability distribution. As the hemo-
dynamic signal and motion artifacts differ in timing and ampli-
tude, with the first being a slow and smooth signal, most wavelet
coefficients of the signal of interest center around zero while
motion artifacts behave like outliers. Therefore, for any given
coefficient, if the coefficient exceeds iqr times the interquartile
range, that coefficient is assumed to not belong in the original
signal and must be a reflection of artifacts that should
be removed. Iqr was set to 1.0 in this experiment. Outlier
terms were removed by setting them to zero preceding the
reconstruction of the artifact-free signal using the inverse dis-
crete wavelet transform.

1.4.4 Correlation-based signal improvement

This method is a channel-by-channel approach developed by
Cui et al.21 It reduces motion artifacts caused by head move-
ments. The main assumption is that HbO and HbR should be
strongly negatively correlated during functional activation and
become more positively correlated during motion. Furthermore,
the ratio between HbO and HbR is assumed to be the same
with and without the presence of motion artifacts. Within this
method, the measured signal is assumed to have three compo-
nents: the true signal of interest, motion-induced noise, and
other white noise.21 As the white noise component can be easily
removed with filters, the purpose then is to compute the true
HbO and HbR signal. To do so, two assumptions must be met:
first, the correlation between HbO and HbR should be close to
−1 and the correlation between the motion artifact and HbO
should be close to 0. Solving the following equations should
then produce the true signal of interest

EQ-TARGET;temp:intralink-;sec1.4.4;326;209x0 ¼ ðx − α � yÞ∕2;

EQ-TARGET;temp:intralink-;sec1.4.4;326;179y0 ¼ −ð1∕αÞ � x0
with

EQ-TARGET;temp:intralink-;sec1.4.4;326;142α ¼ stdðxÞ∕stdðyÞ;

where stdðxÞ is the standard deviation of x.
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1.5 Data Processing

The NIRS data were processed using HomER233 based in
MATLAB (Mathworks, Massachusetts). Raw optical signals
were first converted to optical density. Channels with very
low optical density [<80 dB; dB ¼ 20 � LOG10ðyÞ, where y
is the intensity level measured by the CW6 system] were dis-
carded from the analysis. Incorrect trials were also discarded
from further analysis. The mean number of trials included for
each participant in each condition was 17.3 (SD ¼ 4.8). The
mean number of trials per participant and condition was quite
high, giving us confidence in the ability to detect differences
between the motion processing algorithms.

1.6 Selection of Motion Detection Parameters

fNIRS data from young children often has far more motion
epochs than data collected from typical adults. Moreover,
young children can only perform a handful of trials, making
each trial crucially important. Therefore, it is important to
employ a set of parameters and a correction technique that
recovers as many trials as possible while still decontaminating
the data. However, the process of selecting the “right” param-
eters for a given dataset is an ambiguous one. There are no well-
defined metrics for setting parameters other than exploring the
properties of each dataset or using values that other groups have
used and exploring how those parameter values affect the data.

Before comparing the motion correction techniques, we
explored two different set of motion detection parameters
(Table 1). We used the parameters from Brigadoi et al.12 as
a starting point because this allows for a direct comparison with
this previous study. Specifically, motion artifacts were identified
in the optical density (OD) time series using the motion detec-
tion algorithm, hmrMotionArtifact. Signal changes with ampli-
tude (AmpThresh) >0.4 au and exceeding a threshold of 50 in
change of standard deviation (StDevThresh) within 1 s were
identified as motion artifacts (tMotion). Artifacts were masked
for an additional 1 s before and after the motion epochs (tMask).
Trials were rejected if an artifact appeared 10 s after the stimulus
onset (enStimRejection: 0 to 10 s). Periods masked as motion
artifacts on a given channel were identified on all channels. Note
that a channel-specific approach, hmrMotionArtifactByChannel,
was used for the spline interpolation technique. This algorithm
works the same way but on a channel-by-channel basis.

This parameter set did a good job identifying a variety of
artifacts (Fig. 4). However, it resulted in a limited number of
trials remaining after motion correction for some motion correc-
tion approaches. This might accurately reflect our data: it is pos-
sible that there was too much motion in our dataset and the
excluded trials really should be excluded. Examination of the
dataset suggested, instead, that the motion detection parameters

were too conservative in some cases. For instance, in the lower
panel of Fig. 4, the first motion artifact is relatively minor,
whereas the second and third artifacts are large.

Thus, we took a second look through the data, identifying
motion detection parameters that would still do a good job of
identifying large motion artifacts in the data, but would let
more minor motion artifacts pass through. Note that, although
this allows some noise to pass through to the final analysis, this
noise trades off with the increase in the number of trials we are
averaging over per participant. We relaxed the motion detection
parameters (see Table 1) such that signal changes with ampli-
tude >0.4 au and exceeding a threshold of 100 in change of
standard deviation within 0.3 s were identified as motion arti-
facts. Artifacts were masked for an additional 1 s before and
after the motion epochs. Thus, in this stage, we are in effect cap-
turing fast, high-amplitude artifacts. The segments identified in
yellow in Fig. 4 reflect motion detection using the second
“relaxed” set of parameters. As is evident, the second set is
most sensitive to fast changes in amplitude. Note, however,
that both set of parameters do a good job detecting clear epochs
of motion present in the data.

Five processing approaches (PCA, Wavelet, tPCA, spline,
CBSI) were applied to the data after noisy channels were
removed. Figure 5 shows the processing stream for all tech-
niques. Four of these techniques (PCA, Wavelet, tPCA, and
spline) applied the correction on the OD data. Two of these
techniques—tPCA and spline—did correction based on a first
round of motion artifact detection. Here, we used the more
conservative parameters borrowed from Brigadoi et al.12 to
detect—and possibly correct—as much motion as possible.

Table 1 Motion detection parameters.

Original parameters Relaxed parameters

tMotion 1 0.3

tMask 1 1

StDevThresh 50 100

AmpThresh 0.4 0.4

Fig. 5 Processing stream for all techniques. Processing steps for all
techniques are represented by a colored arrow: green for CBSI, blue
for PCA, purple for Wavelet, red for tPCA, orange for spline, and gray
for no correction. Note that tPCA and spline require motion to be
detected before applying the correction.
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After each correction technique had been applied to the data,
motion artifact was detected (assuming motion across all chan-
nels) using the “relaxed” parameters. Trials with motion artifact
at this step were rejected. Data were then bandpass filtered
(0.016 to 0.5 Hz) and the concentrations of oxygenated hemo-
globin (HbO), deoxygenated hemoglobin (HbR), and total
hemoglobin (HbT) were computed using the modified Beer–
Lambert Law.38,39 A differential path length (DPF) factor of
6.0 was used for both wavelengths.40

The fifth correction technique, CBSI, applies the motion cor-
rection on concentration changes (see Fig. 5). Therefore, the OD
data were bandpass filtered and then converted to concentration
changes. The correction method was then applied, motion artifact
was detected using the “relaxed” parameters, and trials with
motion artifact were rejected. As a final step, the data from the
five motion correction techniques were block-averaged to recover
the mean hemodynamic response by condition. This yielded six
mean measured hemodynamic responses for HbO and HbR for
each channel and participant. The performance of these techniques
was compared with each other and to uncorrected data.

1.7 Quantitative Comparison of the Approaches

The first step in the quantitative analysis was to identify chan-
nels with task-relevant hemodynamic response. The goal was to
reduce the number of comparisons and to evaluate the motion
correction approaches only on those channels with task-relevant
signals. Thus, we compared the concentration of HbO and HbR
and included all channels showing a significant difference
(p < 0.05) between these signals within the task-relevant win-
dow (0 to 10 s; see Buss et al.2). Thirty-four channels passed this
criterion. Next, a block average time series for HbO and HbR
was created by averaging data from all six experimental condi-
tions. The central dataset analyzed was from 34 channels and
25 participants contributing two values (HbO and HbR) for
each of the metrics described below.

Following Brigadoi et al.,12 we quantitatively compared
the efficacy of each correction technique using five metrics.
The metrics were defined to provide estimates of how physio-
logically plausible the recovered mean hemodynamic responses
are. The first, the area-under-the-curve (AUC0−2), encompasses
the first two seconds after the onset of the first stimulus array
and it is assumed to be composed of artifacts. Therefore, smaller
values for this index indicate better performance. The second
metric is the AUC2−6 that captures the rise and peak of
the hemodynamic response specific to our task. Buss et al.2

found task-related functional activity between 4 and 6 s after
the onset of the first stimulus array in the working memory para-
digm used here. Thus, higher values in this time window indi-
cate better performance. Third, we computed the ratio between
AUC2−6 and AUC0−2. Larger ratio values indicate better perfor-
mance with low levels of initial noise (AUC0−2) and a strong rise
of task-related functional activity (AUC2−6). Fourth, we com-
puted the mean standard deviation of each trial-specific hemo-
dynamic response included in the block average by condition
and then averaged across conditions so we end up with one
value for this metric for each channel (SubSD). This captures
the variability present within subjects. This variability is
assumed to be affected by motion artifacts, so higher variability
indicates poorer motion correction performance. Finally, we
computed the number of trials included after motion correction
for each subject and condition. All motion correction techniques
were compared with each other quantitatively using ANOVA.

2 Results
Figure 6 shows the percent of trials recovered after correction by
each technique using these parameters. PCA did not recover
a substantial number of trials after processing and thus was
removed from this stage of the analysis. Figure 7 shows repre-
sentative examples of a time series precorrection and postcorrec-
tion. The top panel shows the uncorrected OD data, whereas
panels B, C, D, and E show the OD data after applying the
tPCA, spline, CBSI, and Wavelet techniques, respectively.
The figure shows data for three channels (for both wavelengths)
with motion epochs color coded by channel. All correction tech-
niques influenced the data by either reducing the amplitude of
the artifacts or completely correcting them. The figure also
shows that the epochs that remain flagged as artifacts, after cor-
rection, are clear motion epochs. Figure 8 shows a representative
example of the recovered hemodynamic response. The figure
shows concentration changes across working memory loads
(SS1 and SS3) for both HbO and HbR for all motion correction
techniques. Overall, all correction techniques effectively remove
the motion-induced noise present in the SS1 hemodynamic
response. Note that the no correction plot (top left) shows an
increase in both HbO and HbR at SS1, which is inconsistent
with functional hemodynamics and could be attributed to
motion epochs. Indeed, the figure shows that after motion cor-
rection this pattern is no longer present. Note that SS3 evoked
a canonical hemodynamic response, with increasing HbO and
a decreasing HbR response. Note that CBSI, despite fabricating
the hemodynamic response, reduced the HbR response.
Similarly, the wavelet algorithm dampened the hemodynamic
response.

We conducted a mixed factor ANOVAwith technique (CBSI,
Wavelet, spline, tPCA) and Hb (HbO, HbR) as within-subject
factors and age as a between-subject factor on a channel-by-
channel basis for the different metrics. For each analysis
that showed an effect of Technique (technique main effect,
technique × age interaction, or technique × Hb interaction),
we conducted posthoc comparisons to determine which tech-
nique performed quantitatively better along that metric. The
number of instances in which each technique performed better
than its counterparts was tallied. Results are shown in Table 2.
Overall, CBSI outperformed the other techniques, with 69
instances where this technique outperformed one of the other
techniques. Two other techniques also performed well, namely
spline and tPCA. Note that most of the significant technique
effects were seen on the AUC0−2 and SubSD metrics, whereas
the techniques performed similarly on AUC2−6 and Ratio.
Particularly, CBSI outperformed all techniques in the AUC0−2
metric, whereas spline and tPCA outperformed the other tech-
niques on the SubSD metric. This latter effect is important,

Fig. 6 Figure shows the percent of trials recovered using each motion
processing technique.
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Fig. 7 Pre and postmotion correction. The figure depicts example channel before and after each motion
processing technique is applied. The time series plotted is optical density data. The solid line shows
the 690-nm wavelength, whereas the 830-nm wavelength is depicted by the dotted lines. The shaded
areas reflect motion artifacts, color coded to reflect each channel. Vertical lines depict the onset of
a trial (i.e., time point 0).
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showing that spline and tPCA are effectively reducing the sub-
ject-specific variability, which is likely influenced by motion
artifacts.

Figure 9 shows the quantitative metrics across comparisons
relative to the data with no motion correction. The top panel of
Fig. 9 shows the mean subject SD for CBSI, spline, tPCA, and
Wavelet relative to no correction. The techniques performed
similarly along this metric and all reduced subject SD relative
to no correction. The bottom panels of Fig. 9 show scatter plots
of the AUC0−2 and AUC2−6 values that were computed from the

recovered mean hemodynamic response for no motion correc-
tion (x-axis) and all other techniques (y-axis). Results were con-
sistent for both HbO and HbR; thus, results are plotted together.
Note that the spread of the data is narrower for the corrected data
(y-axis), resulting in a cleaner signal for the corrected data.

To ensure all techniques outperformed the data without
motion correction, we conducted a mixed factor ANOVA
with technique (no correction, correction) and Hb (HbO and
HbR) as within-subject factors and age as a between-subject fac-
tor on a channel-by-channel basis for each technique separately
for the different metrics. For each analysis that showed an effect
of technique, we conducted posthoc comparisons to determine
which technique performed quantitatively better along that met-
ric. Results are shown in Table 3. Consistent with expectations,
all the techniques showed a quantitative improvement in
the NIRS signal relative to No Correction, although Wavelet
showed the weakest performance on this front. As in the pre-
vious ANOVA, most significant effects resulted from compar-
isons of the AUC0−2 and the SubSD metrics. For the AUC0−2
metric, tPCA substantially outperformed no correction relative
to its counterparts. Similarly, for the SubSD metric, tPCA and
spline outperformed No Correction relative to the other tech-
niques. Note that No Correction outperformed all techniques
on the AUC2−6 metric. Recall that this metric captures the
rise and peak of the hemodynamic response. This suggests
that the motion correction techniques are reducing the amplitude
of the hemodynamic response as a result of correcting artifacts.
Importantly, however, the ratio metric, which is a normalized

Fig. 8 Hemodynamic responses examples. Figure shows an example of the recovered hemodynamic
response as the working memory load increases for a channel in the left frontal cortex for each of the
motion correction technique. Solid lines represent HbO2 and dotted lines represent HbR.

Table 2 Quantitative analysis summary. Table shows the number of
times a technique outperformed its counterparts in channels where
there was a significant effect of technique, technique by Hb or tech-
nique by age interaction on each metric.

Metrics

TotalAUC02 AUC26 Ratio SubSD

CBSI 24 3 3 39 69

Wavelet 6 2 0 13 21

Spline 0 4 1 45 50

tPCA 10 1 0 42 53
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index of the amplitude relative to the signal at the start of
the hemodynamic response window, reveals that tPCA outper-
formed No Correction in more instances than the other
techniques.

Considered together, our results show that CBSI does
a good job along some metrics quantitatively, but we note
that this technique sometimes yields inconsistent corrected

hemodynamic responses. tPCA and spline, on the other hand,
do a good job quantitatively across the board and yield robust
measured hemodynamic responses. Thus, as a last analysis step,
we explored how these two approaches fared against each
other.

A mixed factor ANOVA with technique (spline, tPCA) and
Hb (HbO and HbR) as within-subject factors and age as

Fig. 9 Results for the comparison analysis. Top panel shows the mean standard deviation averaged
across subjects. Error bars depict the standard error of the mean. The bottom panel shows the scatter
plots for the AUC0−2 and AUC2−6 metrics for both HbO (shown in red circles) and HbR (shown in blue
triangles), no motion correction on the x -axis versus CBSI, spline, tPCA, and Wavelet on the y -axis.
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a between-subject factor was computed on a channel-by-channel
basis for each of the metrics. The number of instances where
each technique performed better than its counterpart in channels
with a significant effect of technique was tallied. Overall, tPCA
outperformed spline in 35 versus 13 cases across all metrics.
Thus, tPCA appears to be the most effective motion correction
method for our dataset.

Note that an additional set of analyses following the pro-
cedure from Buss et al.2 was implemented to explore whether
removing outliers would influence how these techniques per-
form. Outlier trials were removed that contained amplitudes
that were more than 3.5 standard deviations above or below
a participant’s mean in each condition for 18 consecutive
time samples. A technique X outlier removal ANOVAwas com-
puted for all the metrics. Given that some of these techniques
rely on the variability present in the time series, we hypothesized
that removing outlier observations from the data would
improve how the techniques performed. This was not the
case; removing outliers did not have a significant effect on
the performance of the techniques for any of the quantitative
metrics (p > 0.05).

3 Discussion
Given the prevalence of motion artifacts, several recent papers
have evaluated the efficacy of different motion correction tech-
niques for fNIRS data. These comparisons have mostly relied on
simulated data; less is known about how these techniques work
on empirical data from cognitive tasks. Brigadoi et al.12 showed
that Wavelet outperformed the other motion techniques in
a dataset from adult participants, whereas Hu et al.30 showed
that a combination of wavelet filtering and a moving average
outperformed other techniques on a dataset from older children
(mean age ¼ 9.9 years). In the present study, we used a
comparable approach to examine which techniques are most
effective with data from young children. This is an important
contribution given that data from young children often have
more, and potentially different, motion artifacts. Moreover, dis-
carding trials due to motion is less viable given that participants
can only complete a handful of trials. Note that the present
investigation may also provide useful information for research-
ers using fNIRS to study brain activity in aging adults or patient

populations (i.e., epileptic or Alzheimer’s patients). Like young
children, these participants may generate a higher quantity of
motion artifacts and may also generate different kinds of motion
artifacts. Selb at al.31 reported that the best way to limit the effect
of motion artifacts in oscillation data from stroke patients is to
discard the contaminated epochs. This approach, is not optimal
given how frequent these artifacts can be present in these pop-
ulation. Thus, continuous development of correction techniques
and investigating its effects with real-task based data remains
an important topic of study.

In their report, Hu et al.30 classified motion artifacts info four
different types. Those types include fast spikes (within 1 s),
peaks with a standard deviation of 100 from the mean with a
duration of 1 to 5 s, gentle slopes between 5 and 30 s that devi-
ated 300 from the mean, and a slow baseline shift longer than
30 s. In the present study, motion artifacts consisted primarily of
type 1 from Hu et al., that is, fast spikes (0.3 to 1 s).

Our results suggest that CBSI was effective at correcting for
motion artifacts for some metrics, although a qualitative look at
how CBSI affected the resultant hemodynamic response across
conditions raised concerns that this approach might be
producing unstable hemodynamic responses. tPCA and spline
performed more robustly, outperforming the other motion
correction techniques both in the number of trials recovered
and across multiple quantitative metrics of interest. Note that
both of these techniques rely on a first pass of motion artifact
detection and we used conservative detection parameters from
Brigadoi et al.12 for this initial pass through the data. This has the
advantage of detecting multiple types of motion epochs and
attempting to correct them. Then, we used relaxed motion detec-
tion parameters in the second pass to exclude primarily fast
spikes and allow more data to pass through to the block average
for each participant. This approach seemed quite effective.
Although both approaches fared well, in a head-to-head
comparison, tPCA performed quantitatively better. Thus, we
conclude that tPCA is the most effective motion correction
technique with our data.

Another advantage of tPCA is that it targets specific epochs,
where the artifacts are present.32 Given that motion artifacts are
often distributed throughout a data collection session, this means
that fewer trials are likely to be lost due to motion. This is par-
ticularly important in cases where there is a high quantity of
artifacts and a small number of trials. Consistent with this,
the PCA algorithm—which does not target motion epochs,
but rather requires that an artifact be presented in multiple chan-
nels to be identified as a principal component—eliminated too
many trials to make it viable for our dataset.

The spline technique performed well in the quantitative
analysis but interestingly, it did not fully correct as many arti-
facts as other techniques (see Fig. 7), even though it does reduce
the amplitude of these epochs. This could explain why it per-
formed similarly to the no correction method on the ratio metric.
Previous studies have reported that spline can yield inconsistent
results across studies.12,23,28,30,41 This technique works by gen-
erating a cubic spline function based on previously detected
artifacts and then removing this function from the signal. The
inconsistency might arise because artifacts can be highly vari-
able; thus, using umbrella parameters (i.e., the same parameters
across participants) could result in the interpolation function
fitting some artifacts but not others.

One concern with the motion correction approaches is that
they appear to be dampening the resultant amplitude of the

Table 3 Technique versus no correction. Table shows a summary of
the number of times a technique outperformed the no correction
method in channels, where there was a significant effect of technique,
technique by age interaction or technique by Hb interaction on each
metric. Numbers in parenthesis indicate the number of times the no
correction method outperformed a technique.

Metrics

Techniques (no correction)

CBSI Wavelet Spline tPCA

AUC02 20 (0) 24 (0) 27 (5) 44 (0)

AUC26 5 (14) 7 (17) 3 (5) 7 (19)

Ratio 1 (2) 6 (7) 0 (2) 9 (6)

SubSD 57 (0) 39 (26) 87 (0) 90 (0)

Total 83 (16) 76 (50) 117 (12) 150 (25)
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hemodynamic response. For instance, after correction, the signal
amplitude in Fig. 9 is narrow, particularly for Wavelet. Recall
that in this article we calculated an average measured hemo-
dynamic response across conditions to reduce the number of
comparisons. This could be having a dampening effect in the
measured response. However, this effect could also suggest
that when many artifacts are present, there is a risk of over-
correcting, that is, removing important variance from the hemo-
dynamic response of interest. This is particularly plausible
in data from young children where artifacts are distributed
throughout the time series, including within the response of
interest. In the present report, the amplitudes of the resultant
hemodynamic response when plotted by condition were around
0.2 μM. Hemodynamic response amplitudes from our previous
study2 were in the same range (0.2 to 0.5 μM). Thus, it appears
that overcorrection is not a major concern here. That said, it is
important to tailor the motion correction parameters to the prop-
erties of each dataset to ensure that overcorrection does not
occur.

Our results also provide insights into why some techniques
perform better than others with data from young children. For
instance, techniques that do not rely on any motion detection
algorithm and assume that an artifact should be present on
multiple channels, such as PCA, performed poorly because
this assumption was not met in our data; consequently, these
approaches eliminated too many trials. On the contrary, tech-
niques relying on motion detection performed better because,
after detection and then correction, more trials are kept, thus
increasing the signal-to-noise ratio of the data. Furthermore,
our data suggest that tPCA performed better than spline because
spline removes the signal when an artifact is identified. If many
motion artifacts are identified, as in our dataset, this method
removes potentially useful signal. By contrast, tPCA removes
only some of the variance, potentially retaining a portion of
the signal of interest even if many artifacts are identified.
These results highlight the importance of not only selecting
the right parameters when processing fNIRS data but also
sheds light on why some techniques outperform others with
highly contaminated data.

Great strides have been made in finding reliable motion cor-
rection techniques for fNIRS data. Our study has contributed to
this body of work by evaluating different techniques head to
head with data from young children from a cognitive task,
and considering multiple motion detection parameter settings.
Of course, new motion processing approaches are always in
development; thus, future work will be needed to continually
re-evaluate new approaches such as a recent kurtosis-based
wavelet filtering approach,25 EMD,26 and an optical model on
the influence of optode fluctuation on the fNIRS signal27

as well as the autoregressive algorithm developed by Barker
et al.24 We note that the autoregressive algorithm was not
included in our analysis because this approach uses deconvolu-
tion techniques rather than the block average approach evalu-
ated here.

Note that Umeyama’s approach to detect optode fluctuations
prior to starting data collection provides a great advancement in
our understanding of how some artifacts are generated,18 and
could potentially help reduce the quantity of artifacts. We sus-
pect, however, that this approach may have limited application
with young children given that it adds an extra step to data
collection, which might result in the participant not completing
the task. Future work should investigate Yamada’s optical

model27 to correct for these placement faults in data from
children.

Although our results provide evidence that tPCA is a prom-
ising choice for correcting motion artifacts in fNIRS data,
it is necessary to consider some details about our design. In
this experiment, we used a variable intertrial-interval (mean
12.3 s, min 2.3 s), mostly driven by the child being ready
and paying attention to continue on to the next trial. This, of
course, means that the hemodynamic response of interest, recov-
ered by block average, is different for short ITI versus long ITI
trials. However, this added between-trials variability is present
for all techniques; thus, we do not think this concern undermines
our conclusions. Furthermore, the DPF factor used in the study
was the default parameter in HomER2, 6.0 for both wave-
lenghts, and was not corrected for age. Note that recent work
by Li et al.,42 used the same parameter (6.0) in a comparable
sample (3- to 5-year-olds). Previous work suggests that a
DPF of 4.8 to 5.13, depending on the wavelength, should
be used when estimating concentration changes in frontal–
frontotemporal data from children.43 However, anatomical
differences across individuals may also play a role in regard
to this calculation.43 Although we acknowledge this parameter
is important to accurately model concentration changes, we used
a parameter previously used in the literature42 and kept it con-
sistent across techniques thus we do not think this undermines
out conclusions. Future work should explore if this has an effect
in our ability to investigate the efficacy of motion correction
techniques.

4 Conclusion
Correcting motion artifacts that contaminate the signal of inter-
est is a critical step when processing fNIRS data. To estimate the
true hemodynamic response, it is crucial that these artifacts are
detected and removed. Our results showed that tPCA, spline,
Wavelet, and CBSI outperformed PCA in terms of retaining
a higher number of trials. CBSI, spline, and tPCA also
performed well in direct head-to-head comparisons with the
other approaches using a set of quantitative metrics. The
CBSI method corrected many of the artifacts present in our
data; however, this approach produced sometimes unstable cor-
rected hemodynamic responses. The targeted PCA and spline
methods, on the other hand, proved to be the most robust, per-
forming well across all comparison metrics. When compared
head-to-head, tPCA consistently outperformed spline. This is
consistent with what Yücel et al.32 reported when comparing
tPCA, spline, and Wavelet in a dataset where a synthetic hemo-
dynamic response was introduced to a raw NIRS signal. Thus,
we conclude that tPCA is a promising choice for correcting
motion artifacts in fNIRS data from young children as well
as datasets with a high number of motion artifacts.
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