53 research outputs found

    Reprint of: High prey-predator size ratios and unselective feeding in copepods: A seasonal comparison of five species with contrasting feeding modes

    Get PDF
    There has been an upsurge of interest in trait-based approaches to zooplankton, modelling the seasonal changes in the feeding modes of zooplankton in relation to phytoplankton traits such as size or motility. We examined this link at two English Channel plankton monitoring sites south of Plymouth (L4 and E1). At L4 there was a general transition from diatoms in spring to motile microplankton in summer and autumn, but this was not mirrored in the succession of copepod feeding traits; for example the ambushing Oithona similis dominated during the spring diatom bloom. At nearby E1 we measured seasonality of food and grazers, finding strong variation between 2014 and 2015 but overall low mesozooplankton biomass (median 4.5 mg C m−3). We also made a seasonal grazing study of five copepods with contrasting feeding modes (Calanus helgolandicus, Centropages typicus, Acartia clausi, Pseudocalanus elongatus and Oithona similis), counting the larger prey items from the natural seston. All species of copepod fed on all food types and differences between their diets were only subtle; the overriding driver of diet was the composition of the prey field. Even the smaller copepods fed on copepod nauplii at significant rates, supporting previous suggestions of the importance of intra-guild predation. All copepods, including O. similis, were capable of tackling extremely long (>500 ”m) diatom chains at clearance rates comparable to those on ciliates. Maximum observed prey:predator length ratios ranged from 0.12 (C. helgolandicus) up to 0.52 (O. similis). Unselective feeding behaviour and the ability to remove highly elongated cells have implications for how copepod feeding is represented in ecological and biogeochemical models

    Seasonal phosphorus and carbon dynamics in a temperate shelf sea (Celtic Sea)

    Get PDF
    The seasonal cycle of resource availability in shelf seas has a strong selective pressure on phytoplankton diversity and the biogeochemical cycling of key elements, such as carbon (C) and phosphorus (P). Shifts in carbon consumption relative to P availability, via changes in cellular stoichiometry for example, can lead to an apparent ‘excess’ of carbon production. We made measurements of inorganic P (Pi) uptake, in parallel to C-fixation, by plankton communities in the Celtic Sea (NW European Shelf) in spring (April 2015), summer (July 2015) and autumn (November 2014). Short-term (<8 h) Pi-uptake coupled with dissolved organic phosphorus (DOP) release, in parallel to net (24 h) primary production (NPP), were all measured across an irradiance gradient designed to typify vertically and seasonally varying light conditions. Rates of Pi-uptake were highest during spring and lowest in the low light conditions of autumn, although biomass-normalised Pi-uptake was highest in the summer. The release of DOP was highest in November and declined to low levels in July, indicative of efficient utilization and recycling of the low levels of Pi available. Examination of daily turnover times of the different particulate pools, including estimates of phytoplankton and bacterial carbon, indicated a differing seasonal influence of autotrophs and heterotrophs in P-dynamics, with summer conditions associated with a strong bacterial influence and the early spring period with fast growing phytoplankton. These seasonal changes in autotrophic and heterotrophic influence, coupled with changes in resource availability (Pi, light) resulted in seasonal changes in the stoichiometry of NPP to daily Pi-uptake (C:P ratio); from relatively C-rich uptake in November and late April, to P-rich uptake in early April and July. Overall, these results highlight the seasonally varying influence of both autotrophic and heterotrophic components of shelf sea ecosystems on the relative uptake of C and P

    mNCEA policy brief - Mind the Gap – The need to continue long-term plankton monitoring

    Get PDF
    This policy brief argues that while it is beneficial to explore novel plankton survey technology, it is essential that we also continue to maintain traditional long-term monitoring programmes to generate the necessary information to inform policy. Changes in plankton have important implications for the continued provision of ecosystem services, including supporting commercial fish stocks, carbon sequestration, and oxygen production. Such changes can only be detected by studying long-term, consistent plankton datasets which are needed to understand the pressures driving these changes and how we can manage them. Traditional long-term plankton monitoring relies on light microscopy to identify and count plankton taxa, with methods fully supported by national / international QA/QC standards and providing high quality trusted data. Novel technologies, including imaging and molecular methods, offer more efficient means of collecting some types of plankton data, filling targeted knowledge gaps left by traditional monitoring. However, these data are often semi-quantitative, lacking in QA/QC standards, and/or in taxonomic resolution. While these technologies are developed it remains critical to maintain the continuity of traditional plankton monitoring to inform policy assessments of important changes in biodiversity. Losing these time-series, many of which span multiple decades, would impair our ability to detect important change in pelagic habitats, as most changes cannot be detected from short-term data. This would also accelerate the loss of taxonomic expertise, already under threat globally, diminishing our UK skill-base. Novel technologies should be explored in parallel to traditional monitoring, as they can provide complementary data to support policy assessments and research, however, it is important that we do not attempt to replace traditional monitoring with new technology before it has been thoroughly integrated into long-term monitoring programmes. This project was funded by the Department for Environment, Food and Rural Affairs (Defra) as part of the marine arm of the Natural Capital and Ecosystem Assessment (NCEA) programme. The marine NCEA programme is leading the way in supporting Government ambition to integrate natural capital approaches into decision making for the marine environment. Find out more at https://www.gov.uk/government/publications/natural-capital-and-ecosystem-assessment-programme

    Microbial uptake dynamics of choline and glycine betaine in coastal seawater

    Get PDF
    Choline and glycine betaine (GBT) are utilized as osmolytes to counteract osmotic stress, but also constitute important nutrient sources for many marine microbes. Bacterial catabolism of these substrates can then lead to the production of climate active trace gases such as methylamine and methane. Using radiotracers, we investigated prokaryotic choline/GBT uptake and determined biotic and abiotic factors driving these processes in the Western English Channel, UK. Kinetic uptake parameters indicated high affinity (nM range) for both osmolytes and showed a seasonal pattern for choline uptake. Generalized linear modeling of uptake parameters suggested a significant influence of sea surface temperature and salinity on prokaryotic uptake of both osmolytes. The presence of diatoms significantly influenced prokaryotic choline/GBT uptake dynamics. Choline uptake was further related to the occurrence of Phaeocystis spp., which were highly abundant in the phytoplankton community during spring, and dinoflagellates abundance during summer. While Rhodobacteraceae were the most important bacterial drivers for prokaryotic choline uptake, prokaryotic GBT uptake was associated with various groups such as SAR11 (Pelagibacterales) and Gammaproteobacteria, suggesting a wider capacity for GBT catabolism than previously recognized. Furthermore, using a newly developed approach we determined the first available data for dissolved GBT concentrations in seawater and found both osmolytes to be at the sub-nanomolar range. Together, this study improves our understanding of the biogeochemical cycling of these environmentally important osmolytes and highlights how their cycles may be affected by a changing climate

    Iodide, iodate & dissolved organic iodine in the temperate coastal ocean

    Get PDF
    The surface ocean is the main source of iodine to the atmosphere, where it plays a crucial role including in the catalytic removal of tropospheric ozone. The availability of surface oceanic iodine is governed by its biogeochemical cycling, the controls of which are poorly constrained. Here we show a near two-year time series of the primary iodine species, iodide, iodate and dissolved organic iodine (DOI) in inner shelf marine surface waters of the Western English Channel (UK). The median ± standard deviation concentrations between November 2019 and September 2021 (n=76) were: iodide 88 ± 17 nM (range 61-149 nM), iodate 293 ± 28 nM (198-382 nM), DOI 16 ± 16 nM (<0.12-75 nM) and total dissolved iodine (dIT) 399 ± 30 nM (314-477 nM). Though lower than inorganic iodine ion concentrations, DOI was a persistent and non-negligible component of dIT, which is consistent with previous studies in coastal waters. Over the time series, dIT was not conserved and the missing pool of iodine accounted for ~6% of the observed concentration suggesting complex mechanisms governing dIT removal and renewal. The contribution of excess iodine (I*) sourced from the coastal margin towards dIT was generally low (3 ± 29 nM) but exceptional events influenced dIT concentrations by up to ±100 nM. The seasonal variability in iodine speciation was asynchronous with the observed phytoplankton primary productivity. Nevertheless, iodate reduction began as light levels and then biomass increased in spring and iodide attained its peak concentration in mid to late autumn during post-bloom conditions. Dissolved organic iodine was present, but variable, throughout the year. During winter, iodate concentrations increased due to the advection of North Atlantic surface waters. The timing of changes in iodine speciation and the magnitude of I* subsumed by seawater processes supports the paradigm that transformations between iodine species are biologically mediated, though not directly linked

    Abundance of a chlorophyll a precursor and the oxidation product hydroxychlorophyll a during seasonal phytoplankton community progression in the Western English Channel

    Get PDF
    This study presents the first in-situ measurements of the chlorophyll a oxidation product, hydroxychlorophyll a as well as the chlorophyll a precursor, chlorophyll aP276 conducted over an annual cycle. Chlorophyll a oxidation products, such as hydroxychlorophyll a may be associated with the decline of algal populations and can act as an initial step in the degradation of chlorophyll a into products which can be found in the geochemical record, important for studying past climate change events. Here, hydroxychlorophyll a and chlorophyll aP276 were measured at the long-term monitoring station L4, Western Channel Observatory (UK, www.westernchannelobservatory.org) over an annual cycle (2012). Weekly measurements of phytoplankton species composition and abundance enabled detailed analysis of possible sources of hydroxychlorophyll a. Dinoflagellates, 2 diatom species, the prymnesiophyte Phaeocystis spp. and the coccolithophorid Emiliania huxleyi were all associated with hydroxychlorophyll a occurrence. However, during alternate peaks in abundance of the diatoms, no association with hydroxychlorophyll a occurred, indicating that the oxidation of chlorophyll a was dependant not only on species but also on additional factors such as the mode of mortality, growth limiting factor (i.e. nutrient concentration) or phenotypic plasticity. Surface sediment samples contained 10 times more hydroxychlorophyll a (relative to chlorophyll a) than pelagic particulate samples, indicating that more chlorophyll a oxidation occurred during sedimentation or at the sediment-water interface, than in the pelagic environment. In addition, chlorophyll aP276 correlated with chl-a concentration, thus supporting its assignment as a chl-a precursor

    Effects of elevated CO2 on phytoplankton community biomass and species composition during a spring Phaeocystis spp. bloom in the western English Channel

    Get PDF
    A 21-year time series of phytoplankton community structure was analysed in relation to Phaeocystis spp. to elucidate its contribution to the annual carbon budget at station L4 in the western English Channel (WEC). Between 1993–2014 Phaeocystis spp. contributed ∌4.6% of the annual phytoplankton carbon and during the March − May spring bloom, the mean Phaeocystis spp. biomass constituted 17% with a maximal contribution of 47% in 2001. Upper maximal weekly values above the time series mean ranged from 63 to 82% of the total phytoplankton carbon (∌42–137 mg carbon (C) m −3 ) with significant inter-annual variability in Phaeocystis spp. Maximal biomass usually occurred by the end of April, although in some cases as early as mid-April (2007) and as late as late May (2013). The effects of elevated pCO 2 on the Phaeocystis spp. spring bloom were investigated during a fifteen-day semi-continuous microcosm experiment. The phytoplankton community biomass was estimated at ∌160 mg C m −3 and was dominated by nanophytoplankton (40%, excluding Phaeocystis spp.), Phaeocystis spp. (30%) and cryptophytes (12%). The smaller fraction of the community biomass comprised picophytoplankton (9%), coccolithophores (3%), Synechococcus (3%), dinoflagellates (1.5%), ciliates (1%) and diatoms (0.5%). Over the experimental period, total biomass increased significantly by 90% to ∌305 mg C m −3 in the high CO 2 treatment while the ambient pCO 2 control showed no net gains. Phaeocystis spp. exhibited the greatest response to the high CO 2 treatment, increasing by 330%, from ∌50 mg C m −3 to over 200 mg C m −3 and contributing ∌70% of the total biomass. Taken together, the results of our microcosm experiment and analysis of the time series suggest that a future high CO 2 scenario may favour dominance of Phaeocystis spp. during the spring bloom. This has significant implications for the formation of hypoxic zones and the alteration of food web structure including inhibitory feeding effects and lowered fecundity in many copepod species

    Learning biophysically-motivated parameters for alpha helix prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our goal is to develop a state-of-the-art protein secondary structure predictor, with an intuitive and biophysically-motivated energy model. We treat structure prediction as an optimization problem, using parameterizable cost functions representing biological "pseudo-energies". Machine learning methods are applied to estimate the values of the parameters to correctly predict known protein structures.</p> <p>Results</p> <p>Focusing on the prediction of alpha helices in proteins, we show that a model with 302 parameters can achieve a Q<sub><it>α </it></sub>value of 77.6% and an SOV<sub><it>α </it></sub>value of 73.4%. Such performance numbers are among the best for techniques that do not rely on external databases (such as multiple sequence alignments). Further, it is easier to extract biological significance from a model with so few parameters.</p> <p>Conclusion</p> <p>The method presented shows promise for the prediction of protein secondary structure. Biophysically-motivated elementary free-energies can be learned using SVM techniques to construct an energy cost function whose predictive performance rivals state-of-the-art. This method is general and can be extended beyond the all-alpha case described here.</p

    Causal networks of phytoplankton diversity and biomass are modulated by environmental context

    Get PDF
    Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24◩~N58◩) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management

    The Plankton Lifeform Extraction Tool: a digital tool to increase the discoverability and usability of plankton time-series data

    Get PDF
    Publication history: Accepted - 25 October 2021; Published online - 6 December 2021.Plankton form the base of the marine food web and are sensitive indicators of environmental change. Plankton time series are therefore an essential part of monitoring progress towards global biodiversity goals, such as the Convention on Biological Diversity Aichi Targets, and for informing ecosystem-based policy, such as the EU Marine Strategy Framework Directive. Multiple plankton monitoring programmes exist in Europe, but differences in sampling and analysis methods prevent the integration of their data, constraining their utility over large spatio-temporal scales. The Plankton Lifeform Extraction Tool brings together disparate European plankton datasets into a central database from which it extracts abundance time series of plankton functional groups, called “lifeforms”, according to shared biological traits. This tool has been designed to make complex plankton datasets accessible and meaningful for policy, public interest, and scientific discovery. It allows examination of large-scale shifts in lifeform abundance or distribution (for example, holoplankton being partially replaced by meroplankton), providing clues to how the marine environment is changing. The lifeform method enables datasets with different plankton sampling and taxonomic analysis methodologies to be used together to provide insights into the response to multiple stressors and robust policy evidence for decision making. Lifeform time series generated with the Plankton Lifeform Extraction Tool currently inform plankton and food web indicators for the UK's Marine Strategy, the EU's Marine Strategy Framework Directive, and for the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) biodiversity assessments. The Plankton Lifeform Extraction Tool currently integrates 155 000 samples, containing over 44 million plankton records, from nine different plankton datasets within UK and European seas, collected between 1924 and 2017. Additional datasets can be added, and time series can be updated. The Plankton Lifeform Extraction Tool is hosted by The Archive for Marine Species and Habitats Data (DASSH) at https://www.dassh.ac.uk/lifeforms/ (last access: 22 November 2021, Ostle et al., 2021). The lifeform outputs are linked to specific, DOI-ed, versions of the Plankton Lifeform Traits Master List and each underlying dataset.Funding that supports this work and the data collected has come from the European Commission, European Union (EU) grant no. 11.0661/2015/712630/SUB/ENVC.2 OSPAR; UK Natural Environment Research Council (grant nos. NE/R002738/1 and NE/M007855/1); EMFF, Climate Linked Atlantic Sector Science (grant no. NE/R015953/1), Department for Environment, Food and Rural Affairs, UK Government (grant nos. ME-5308 and ME-414135), NSF USA OCE-1657887, DFO CA F5955150026/001/HAL, Natural Environment Research Council UK (grant no. NC-R8/H12/100); Horizon 2020 (MISSION ATLANTIC (grant no. 862428)); iCPR (grant no. SBFF-2019-36526), IMR Norway; DTU Aqua Denmark; and the French Ministry of Environment, Energy, and the Sea (MEEM). Recent funding for the development of PLET and the Pelagic Habitats Indicator has been provided by HBDSEG/Defra and MMO/EMFF. The MSS Scottish Coastal Observatory data and analyses are funded and maintained by the Scottish Government Schedules of Service (grant nos. ST05a and ST02H), MSS Stonehaven Samplers, North Atlantic Fisheries College, Shetland, Orkney Islands Harbour Council, and Isle Ewe Shellfish
    • 

    corecore