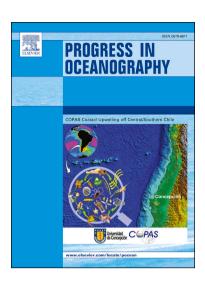


Accepted Manuscript

Seasonal phosphorus and carbon dynamics in a temperate shelf sea (Celtic Sea)


Alex J. Poulton, Clare E. Davis, Chris J. Daniels, Kyle M.J. Mayers, Carolyn Harris, Glen A. Tarran, Claire E. Widdicombe, E. Malcolm S. Woodward

PII: S0079-6611(17)30158-1

DOI: https://doi.org/10.1016/j.pocean.2017.11.001

Reference: PROOCE 1872

To appear in: Progress in Oceanography

Please cite this article as: Poulton, A.J., Davis, C.E., Daniels, C.J., Mayers, K.M.J., Harris, C., Tarran, G.A., Widdicombe, C.E., Woodward, E.M.S., Seasonal phosphorus and carbon dynamics in a temperate shelf sea (Celtic Sea), *Progress in Oceanography* (2017), doi: https://doi.org/10.1016/j.pocean.2017.11.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Seasonal phosphorus and carbon dynamics in a temperate shelf sea (Celtic Sea) 1 2 Alex J. Poulton^{1,†}, Clare E. Davis², Chris J. Daniels¹, Kyle M.J. Mayers³, Carolyn Harris⁴, Glen A. 3 Tarran⁴, Claire E. Widdicombe⁴, and E. Malcolm S. Woodward⁴ 4 5 ¹ National Oceanography Centre, Waterfront Campus, Southampton, UK 6 ² Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK 7 ³ Ocean and Earth Science, University of Southampton, National Oceanography Centre 8 Southampton, Southampton, UK 9 ⁴ Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, UK 10 11 [†] Current address: The Lyell Centre, Heriot-Watt University, Edinburgh, UK 12 * Corresponding author. 13 Tel: +44 (0) 131 451 3891. 14

Email address: a.poulton@hw.ac.uk

15

Highlights: 17

- Seasonal uptake of phosphorus (P) and its dissolved organic release examined in Celtic Sea 18
- Uptake highest in spring bloom, with biomass-normalised affinity highest in summer 19
- Release high in November and late spring, with efficient P-retention and recycling in summer 20
- al in . and early . • Strong phytoplankton influence on spring P-uptake, whilst bacteria influential in summer 21
- Relatively C-rich uptake in November and late April, P-rich in summer and early April 22

Δ	bst	ra	ct

24	The seasonal cycle of resource availability in shelf seas has a strong selective pressure on
25	phytoplankton diversity and the biogeochemical cycling of key elements, such as carbon (C) and
26	phosphorus (P). Shifts in carbon consumption relative to P availability, via changes in cellular
27	stoichiometry for example, can lead to an apparent 'excess' of carbon production. We made
28	measurements of inorganic $P\left(P_{i}\right)$ uptake, in parallel to C-fixation, by plankton communities in the
29	Celtic Sea (NW European Shelf) in spring (April 2015), summer (July 2015) and autumn
30	(November 2014). Short-term ($<$ 8 h) P_i -uptake coupled with dissolved organic phosphorus (DOP)
31	release, in parallel to net (24 h) primary production (NPP), were all measured across an irradiance
32	gradient designed to typify vertically and seasonally varying light conditions. Rates of P _i -uptake
33	were highest during spring and lowest in the low light conditions of autumn, although biomass-
34	normalised P _i -uptake was highest in the summer. The release of DOP was highest in November and
35	declined to low levels in July, indicative of efficient utilization and recycling of the low levels of $P_{\rm i}$
36	available. Examination of daily turnover times of the different particulate pools, including estimates
37	of phytoplankton and bacterial carbon, indicated a differing seasonal influence of autotrophs and
38	heterotrophs in P-dynamics, with summer conditions associated with a strong bacterial influence
39	and the early spring period with fast growing phytoplankton. These seasonal changes in autotrophic
40	and heterotrophic influence, coupled with changes in resource availability (Pi, light) resulted in
41	seasonal changes in the stoichiometry of NPP to daily P _i -uptake (C:P ratio); from relatively C-rich
42	uptake in November and late April, to P-rich uptake in early April and July. Overall, these results
43	highlight the seasonally varying influence of both autotrophic and heterotrophic components of
44	shelf sea ecosystems on the relative uptake of C and P.

- **Keywords:** Phosphorus; Phosphate uptake; Dissolved organic Phosphorus; Stoichiometry.
- **Regional index terms:** Celtic Sea; Northwest European Shelf.

1. Introduction

- 49 Phosphorus (P) is an essential nutrient for marine organisms, forming an important component of
- various cellular constituents, including cell membranes and nucleic acids (RNA, DNA), and in the
- transmission of chemical energy (Benitez-Nelson, 2000; Karl, 2000; Dyhram et al., 2007). The
- availability of P has an important role in controlling planktonic biomass and production and
- community composition (Karl et al., 2001), with regionally low (pM) P concentrations limiting
- biomass accumulation and biogeochemical processes (Moore et al., 2013). The biological cycling of
- nutrients (P, N) are strongly coupled to the carbon (C) cycle via plankton biomass, resulting in
- 56 biological processes, such as photosynthesis and respiration, having a strong influence on
- atmospheric CO₂ (Sterner and Elser, 2002; Arrigo, 2005).
- The elemental stoichiometry (C:P, C:N) of plankton propagates through marine food webs to shape
- 59 ecosystem structure and function (Sterner and Elser, 2002; Elser et al., 2003), and hence plankton
- provide an interface linking biogeochemical cycles, ecosystem dynamics and global climate
- 61 (Arrigo, 2005; Finkel et al., 2010). Understanding microbial elemental stoichiometry is important as
- these relationships play major roles in coupled elemental cycles (Falkowski and Davis, 2004).
- Planktonic micro-organisms, such as heterotrophic bacteria and phytoplankton, have rapid growth
- rates and hence can exert a strong influence on the turnover of different C, N and P pools (Arrigo,
- 65 2005). Both phytoplankton and heterotrophic bacteria consume P, though the two have different
- roles in the marine C-cycle as primary producers and remineralisers of organic material respectively
- 67 (Duhamel and Moutin, 2009), and they may compete strongly for available P when it is in short
- 68 supply (Thingstad et al., 1993, 1996).
- In the marine environment, P is mainly found in dissolved inorganic and organic forms as well as in
- 70 particulate organic matter such as algal cells and detrital material. P is found in the form of
- 71 phosphate (P_i) with P predominately entering the ocean through rivers, and with the main losses
- being through sedimentary processes (Benitez-Nelson, 2000; Karl, 2000; Dyhram et al., 2002). The
- production of DOP is via cellular exudation or lysis, as part of the production of dissolved organic
- matter. Microbes directly incorporate P_i, though a small proportion of dissolved organic phosphorus
- 75 (DOP) may also be bioavailable and must be hydrolysed to be incorporated into the cell (Benitez-
- 76 Nelson, 2000).
- In coastal waters, DOP concentrations range from 0 to 50% of the total P pool, while in the open
- ocean it can be as high as 75% (Karl and Tien, 1992; Benitez-Nelson, 2000; Bjorkman et al., 2000;
- Lønborg et al., 2009; Davis et al., 2014). Not all DOP is labile or bioavailable, with its availability
- 80 for biological uptake controlled by its chemical composition, and up to 50% of the DOP can be

81	refractory and inactive (Bjorkman et al., 2000; Bjorkman and Karl, 2003; Dyhram et al., 2007;
82	Lønborg et al., 2009). The turnover rates of P within dissolved and particulate pools may be rapid
83	(from a few days to a couple of weeks), and vary over seasonal timescales, allowing low P to
84	support relatively high rates of primary production in coastal waters (Benitez-Nelson and Buesseler,
85	1999).
86	Redfield (e.g., Redfield et al., 1963) proposed that plankton and particulate material have a
87	relatively constrained elemental ratio (C:N:P) of 106:16:1, which matches closely with the average
88	ratio of dissolved inorganic N and P in seawater. These observations led to the paradigm that
89	plankton consume inorganic N and P in the same proportion as their availability, fixing them into
90	particulate organic material that is eventually decomposed, thus returning N and P back into their
91	inorganic forms (e.g., Redfield et al., 1963). This paradigm of elemental stoichiometry has been
92	used to link plankton production to the biogeochemical cycling of C, N and P. However, important
93	deviations from the canonical Redfield ratio may occur in the biochemical composition of marine
94	plankton (e.g., Geider and La Roche, 2002; Ho et al., 2003; Finkel et al., 2010), trophic interactions
95	(e.g., Sterner and Elser, 2002; Hessen et al., 2002, 2004) and biogeochemical processes (e.g.,
96	Arrigo, 2005; Bozec et al., 2006; Bauer et al., 2013).
97	As different cellular components, such as proteins and pigments, have their own stoichiometric
98	characteristics and represent significant amounts of the material in plankton cells, changes in their
99	relative proportions strongly influence bulk stoichiometry (Falkowski, 2000; Geider and La Roche,
100	2002). Under nutrient limited growth conditions plankton show increased cellular quotas of C,
101	suggesting increased uptake and storage of C-rich compounds (e.g., Geider and La Roche, 2002).
102	Rapid growth rates are predicted to lead to P-rich biomass as the cellular components required for
103	cell division have a high P-content (i.e., 'the growth rate hypothesis'; Sterner and Elser, 2002).
104	Variability in phytoplankton cellular composition (chlorophyll content, elemental stoichiometry)
105	also influences their quality as food items for higher trophic levels, and affects their growth rates
106	and trophic transfer efficiency (e.g., Hessen et al., 2002, 2004; Sterner and Elser, 2002).
107	The role of variable elemental stoichiometry is an important factor in determining the C-
108	sequestration efficiency of the Continental Shelf Pump (CSP) (Thomas et al., 2004, 2005; Bozec et
109	al., 2006). The CSP describes the process whereby CO ₂ , as dissolved inorganic carbon (DIC), is
110	transformed into particulate organic carbon (via photosynthesis) in the upper water column,
111	exported below the thermocline where it is remineralised back into DIC, and then this DIC is
112	advected into the adjacent open-ocean during winter time convective mixing (Thomas et al., 2004,
113	2005; Bozec et al., 2006). The efficiency of the CSP may be regulated by changing the ratio of

nutrient utilization for photosynthesis and production of particulate material, and by changing the

l15	ratio of nutrient recycling and DIC remineralisation. For example, seasonal changes in DIC and
L16	nutrient drawdown in the North Sea have shown that C-overconsumption occurs relative to nutrient
L17	utilization, assuming Redfield stoichiometry (Toggweiler et al., 1993; Thomas et al., 2004, 2005;
118	Bozec et al., 2006; Kühn et al., 2010). Such C-overconsumption has been suggested to relate to
119	changes in plankton stoichiometry under seasonally varying resource availability (Toggweiler et al.,
120	1993; Thomas et al., 2004, 2005; Bozec et al., 2006; Kühn et al., 2010). Under nutrient limited
l21	conditions plankton may show elevated, relative to the Redfield ratio, C-rich uptake and cellular
122	quotas, and release C-rich dissolved organic matter (e.g., Geider and La Roche, 2002; López-
123	Sandoval et al., 2011). However, direct measurements have yet to confirm whether C-
L24	overconsumption in the CSP is a direct consequence of plankton stoichiometry or whether other
125	biogeochemical processes (e.g. nutrient recycling) are more influential on CSP efficiency. The
L26	stoichiometry of primary production, nutrient uptake and recycling, trophic transfer and
L27	decomposition, are all likely to influence the metabolic balance of shelf seas and the efficiency of
128	the CSP to varying degrees (Bauer et al., 2013).
129	Shelf seas represent less than 10% of the global ocean area, but are responsible for 10 to 30% of
130	primary production, as well as high proportions of global carbon sequestration (Joint et al., 2001;
131	Simpson and Sharples, 2012; Bauer et al., 2013). Hence, determining the processes that underpin
132	the magnitude and efficiency of the CSP is an important step in understanding how shelf seas attain
133	and maintain these roles with environmental variability. The aims of the present study were to: (1)
134	explore seasonal patterns in P _i -uptake and P-release (DOP production) relative to variability in
135	water-column structure, nutrient (N, P) availability, and plankton community composition; and (2)
136	examine the dynamics of P-biogeochemistry in terms of the turnover of different P pools and the
137	stoichiometry of P _i -uptake relative to C-fixation (net primary production, NPP). Overall, this paper
138	provides a better understanding of how the internal biogeochemical cycling of elements contribute
139	to the maintenance and efficiency of the CSP in the Celtic Sea. The specific hypotheses examined
L40	are that: (a) the optimal growth conditions of the spring bloom lead to C-fixation and P _i -uptake at
L41	ratios close to the Redfield ratio; whilst (b), departures from the Redfield ratio occur in response to
L42	changes in resource (light, nutrient) availability.
L43	2. Methods
L44	2.1. Sampling
L45	This study presents data collected from three cruises on-board the RRS Discovery to the Celtic Sea
L46	over the period 2014 to 2015; the first in November 2014 (DY018: 9th November to 2nd
L47	December), the second in spring 2015 (DY029: 1st April to 29th April), and the third and final

148	cruise in summer 2015 (DY055: 11th July to 2nd August). Each cruise focused on a different time-
149	period relevant to the ecosystem and biogeochemistry of the Celtic Sea, from the spring-bloom
150	(April) to summer stratified period (July), and onto the late autumn bloom and break down of
151	stratification (November). As part of this study, two sites were sampled for phosphate dynamics and
152	ancillary parameters, with the main site in the Central Celtic Sea (CCS; ~49°24' N, 8°36'W; 150 m
153	water depth), and the second at the Shelf Break (CS2; ~48°34.26'W, 9°30.58' W; 203 m water
154	depth) (Fig. 1). Over the three sampling periods these sites were repeatedly sampled, though CCS
155	was more frequently sampled $(n = 15)$ than CS2 $(n = 6)$.
156	Water samples were collected from six light depths in 20 L Niskin bottles on a CTD rosette sampler
157	deployed pre-dawn (02:00-06:00 h local time) at CCS and CS2. The light depths sampled were 60,
158	40, 20, 10, 5 and 1% of surface irradiance (Photosynthetically Active Radiation, PAR). Pre-dawn
159	sampling depths were determined by back calculation of the vertical attenuation coefficient of PAR
160	(K_d, m^{-1}) , based on either: (a) an assumption that the base of the surface mixed layer (thermocline)
161	was at or close to the depth of the euphotic zone (i.e. 1% of surface irradiance) (November, April);
162	or (b) that the sub-surface chlorophyll-a maximum (SCM) occurred at or close to a depth of 5% of
163	surface irradiance (July) (Hickman et al., 2012).
164	Surface mixed layer (SML) depths were determined from processed CTD density data (J. Hopkins,
165	Liverpool, pers. comm.) through a two-step process. Firstly, SMLs were identified automatically by
166	applying a threshold for change in potential density with depth (an increase of either 0.02 kg m ⁻³
167	(November, July) or 0.01 kg m ⁻³ (April) from the potential density at 10 m (or the nearest available
168	measurement)). Secondly, visual examination and confirmation for profiles that failed these criteria
169	or were close to the thresholds selected. Automatic detection of SML depths was successful at CCS,
170	though there were issues at CS2 due to internal wave breaking, and at CCS during April as the
171	stratification of the water-column evolved (J. Hopkins, Liverpool, pers. comm.). Identification of
172	the thermocline during the cruise was based on unprocessed CTD temperature data, while SML
173	identification was based on processed CTD density data. Hence, differences in SML and euphotic
174	zone depths during November and April are possible due to discrepancies in these data sources and
175	physical complexities of the water-column (especially during April and at the shelf break).
176	2.2. Incubations
177	Water samples for NPP, P _i -uptake and DOP production were all incubated in a purposely converted
178	and refitted commercial 20 foot ISO refrigeration shipping container (see Richier et al., 2014),
179	allowing incubation temperatures to be regulated at in situ values (± 1-2°C). Each of the six

percentage light depths (60, 40, 20, 10, 5 and 1% of surface irradiance) had a dedicated incubation

181	chamber built, using blackout material to remove any light contamination between the different
182	light chambers. Irradiance was provided by one to three daylight simulation LED panels (Powerpax
183	UK), each providing up to 100 µmol quanta m ⁻² s ⁻¹ , combined with different types of neutral density
184	filters (Lee Filters TM, UK). The light-dark cycle was varied between different cruises to accurately
185	represent seasonal variability in photoperiods; 9 h in November, 14 h in April and 16 h in July.
186	To determine the seasonal range in incidental irradiance and allow representative daily light doses
187	to be determined for each light depth and each cruise, weekly average daily PAR levels (mol quanta
188	m ² d ⁻¹) over a ten-year period (2003 to 2013) was determined from MODIS Aqua data (S. Henson,
189	Southampton, pers. comm.). Monthly averages over the ten years for incidental irradiance (E_0) for
190	each cruise period were then calculated for the position of the CCS site, giving values of 9.4 mol
191	quanta m^{-2} d^{-1} (November), 36.8 mol quanta m^{-2} d^{-1} (April), and 43.2 mol quanta m^{-2} d^{-1} (July).
192	Actual irradiance levels (E ₀) during each cruise were measured by an on board RRS Discovery 2π
193	PAR irradiance sensor (Skye Instruments, SKE 510), with cruise averages (Table 1) showing
194	excellent agreement with long-term monthly averages.
195	Incidental irradiances for each month were corrected for reflective losses at the sea surface,
196	assuming an 8% loss (D. McKee, Strathclyde, pers. comm.) to give incidental irradiance (100%)
197	values and allow calculation of a light dose for each percentage irradiance chamber. Daily light
198	doses (mol quanta m ⁻² d ⁻¹) were reconstructed using a combination of LED panels and neutral
199	density filters, to achieve a target incidental irradiance per incubation chamber of 7 to 440 µmol
200	quanta m ⁻² s ⁻¹ , which were combined with the appropriate seasonal photoperiod to give a
201	representative seasonal daily light dose for each percentage light depth (see Supplementary Table
202	S1).
203	In summer, when strong vertical stratification occurred across the euphotic zone, the deeper light
204	depth (1%) samples were incubated in a Fytoscope FS130 laboratory incubator (Photon System
205	Instr., Czech Republic) at in situ temperatures (± 1°C) and with a white LED light panel to replicate
206	the required light dose (see Supplementary Table S1). All light levels in the incubation chambers
207	and Fytoscope were checked with a 4π scalar PAR irradiance sensor (Biophysical Instruments,
208	QSL-2101).
209	Incubations for inorganic phosphate uptake and dissolved organic phosphorus release were short-
210	term (<8 h; see below) and hence it is not appropriate to consider patterns in these rates against the
211	full daily light-dose experienced over the entire day-length. Rather, in this study, uptake and release
212	rates are presented (Figs. 2, 3, 4 and 6) against gradients in instantaneous irradiance (h ⁻¹), but not

213 214	length have no influence on the vertical patterns in uptake or release rates.
215	2.3. Inorganic Phosphate Uptake and Release of Dissolved Organic Phosphorus
	Hourly rates (dawn to midday, ~6-8 h) of inorganic phosphate uptake (P _i -uptake) were determined
216	
217	following Rees et al. (1999), Björkman et al. (2000), and Reynolds et al. (2014). Water samples
218	from the six light depths were collected directly from the CTD under low-light conditions (pre-
219	dawn) into 500 mL brown Nalgene TM bottles which were returned to the on-board laboratory for
220	sub-sampling. Under low light conditions, sub-samples (3 light, 1 dark) were then dispensed into 70
221	mL polycarbonate bottles (Corning, Inc.) and each bottle spiked with either 111 to 222 kBq ³³ P-
222	labelled orthophosphoric acid (PerkinElmer, Inc., specific activity 37 kBq nmol ⁻¹) during April
223	2015 and November 2014, or 333 kBq ³³ P-labelled orthophosphoric acid (Hartman Analytical
224	GmbH, specific activity 111 kBq pmol ⁻¹) during July 2015. Use of these two isotopes ensured low
225	P _i addition and no enrichment of the ambient P _i pools; in the case of April and November the spike
226	addition resulted in ~3 to 6 nmol P (<3% of ambient P _i concentrations), and ~9 pmol in July (<1%
227	of ambient P_i concentrations). From one light bottle per light depth, three aliquots of 100 μL were
228	then removed and placed into 7 mL glass scintillation vials to which 6 mL of Ultima Gold TM
229	(PerkinElmer, Inc.) liquid scintillation cocktail was added, and initial activities were counted at sea
230	on a Tri-Carb 3110TR scintillation counter. Triplicate light bottles and the single dark bottle were
231	then incubated in the controlled temperature (CT) incubators for 6 to 8 h at six irradiance levels (see
232	previous Section).
233	To determine P _i -uptake, incubations were terminated by filtration of each sample bottle (3 light, 1
234	dark) onto a 25 mm diameter 0.45 μm polycarbonate Nuclepore TM filter under gentle pressure.
235	Filtered samples were rinsed with unlabelled Whatman GF/F filtered seawater, air-dried and placed
236	in 7 mL glass scintillation vials and 6 mL of Ultima Gold TM (PerkinElmer, Inc.) liquid scintillation
237	cocktail added. Activity on the filters was then determined on a Tri-Carb 3100TR scintillation
238	counter, with P _i -uptake calculated following Björkman et al. (2000). P _i -uptake is represented both
239	on hourly time-scales (Fig. 3), averaged from the short-term (6-8 h) incubations, and scaled to a
240	daily (24 h) time-frame (Table 2) by multiplying hourly rates by 24 and assuming little or no
241	diurnal variability in P _i -uptake (see Discussion).
242	To determine the release of Dissolved Organic Phosphorus (DOP), at the end the incubation period
243	10 mL aliquots were removed from each of the four sample bottles (3 light, 1 dark) from three light
244	depths (60, 20 and 1% during November and April, 60, 5 and 1% during July). These aliquots were
245	gently filtered through 25 mm diameter 0.2 µm Whatman Nuclepore TM polycarbonate filters to

246	remove particulate material and the filtrate caught in 15 mL glass test tubes (10% Hydrochloric
247	acid-washed, Milli-Q-rinsed and oven-dried). Each 10 mL aliquot was then transferred to a plastic
248	$15\ mL$ centrifuge tube and $250\ \mu L$ of a 1 M sodium hydroxide solution (Sigma-Aldrich, UK) added
249	to precipitate out the dissolved P_i and leave the $^{33}\text{P-labelled DOP}$ (Karl and Tien, 1992; Thomson-
250	Bulldis and Karl, 1998; Björkman et al., 2000). Aliquots were shaken vigorously and centrifuged
251	for 1 h at 3500 rpm, with 1 mL of the supernatant removed from each, and placed in 7 mL glass
252	scintillation vials with 6 mL of Ultima Gold TM (PerkinElmer, Inc.) liquid scintillation cocktail. The
253	activity of the filtrate was then measured in a TriCarb 3100TR scintillation counter.
254	To estimate the proportion of DOP exuded relative to the phosphate (Pi) consumed, the gross rate of
255	P _i -uptake was estimated as the rate of P _i -uptake plus the rate of DOP production. Hence, we
256	calculated a percentage extracellular release for DOP as the fraction of total P_i -uptake (i.e., the sum
257	of P _i -uptake and DOP production) represented by DOP production alone, multiplied by 100. DOP
258	production is represented both on hourly time-scales (Fig. 4), averaged from the short-term (6-8 h)
259	incubations, and scaled to a daily (24 h) time-frame by multiplying hourly rates by 24 and assuming
260	little or no diurnal variability in DOP production.
261	The average relative standard deviation (RSD = standard deviation/Average x 100) of triplicate P_i -
262	uptake measurements was 13% (range 2-49%) for November, 18% (3-67%) for April and 18% (1-
263	66%) for July. The average RSD of triplicate DOP production measurements was 31% (1-94%) for
264	November, 17% (1-39%) for April and 20% (2-53%) for July.
265	2.5. Particulate Organic Phosphorus and Dissolved Organic Phosphorus
266	Water samples for determination of the concentrations of Particulate Organic Phosphorus (POP)
267	were collected from 6 to 8 depths (see Davis et al., this issue). Water samples (1 L) for POP
268	concentrations were filtered onto 25 mm Whatman GF/F (pre-combusted for 4 h at 450°C and
269	Hydrochloric acid-washed) glass-fibre filters (nominal pore size 0.7 µm) on a plastic filtering rig
270	under less than 12 kPa vacuum pressure. Filters were dried and POP concentrations determined
271	following Davis et al. (2014, this issue), with analysis in duplicate against certified reference
272	materials (CRM; SRM 1515 Apples Leaves, NIST) in triplicate with each sample extraction to
273	ensure analytical precision and accuracy of less than 2%. Sampling and storage bottles for POP and
274	DOP were pre-cleaned with 10% Hydrochloric acid and rinsed with Milli-Q before use. Samples for
275	DOP were pre-filtered through a combusted and acid-rinsed Whatman GF/F filter and stored in
276	HDPE bottles at -20°C before analysis. DOP concentrations were determined in triplicate by
277	measuring the difference in phosphate concentration before (total phosphate) and after (total
278	dissolved phosphate) UV oxidation.

2/9	Total dissolved phosphorus (TDP) was determined using the high temperature acid persumate
280	technique as described in Lomas et al. (2010) with the following modifications. Standards were
281	made up in P-free artificial seawater using potassium monobasic phosphate (KHPO ₄ , Sigma
282	Aldrich). Samples and standards were autoclaved (121°C, 40 min) as 40 mL aliquots in tightly
283	sealed 50 mL glass Pyrex® bottles with Teflon® lined screw caps after addition of 5 mL potassium
284	persulfate solution (64 g/L). Following oxidation, samples were cooled overnight and then
285	precipitated using the magnesium induced co-precipitation (MAGIC) method (Karl and Tien, 1992)
286	by addition of 5 mL 1M sodium hydroxide solution (Sigma Aldrich). This step removed chloride
287	ions, which appeared to cause interference during DIP determination. Following centrifugation
288	(1000 x g, 60 min), the supernatant was discarded and the sample/standard pellet was completely
289	dissolved in 40 mL 0.1 M hydrochloric acid (Trace metal grade, Sigma Aldrich). Analytical blanks
290	were determined as described in Lomas et al. (2010).
291	Total dissolved phosphorus was determined in triplicate as dissolved inorganic phosphorus (DIP)
292	concentrations in the samples by the molybdenum blue method (Murphy and Riley, 1962) using a
293	Bran and Luebbe QuAAtro 5-channel auto-analyser (DIP detection limit 50 nM). At low DIP
294	concentrations (<100 nM), samples were reanalysed in triplicate 50 mL aliquots using the MAGIC
295	method (Karl and Tien, 1992) prior to DIP determination as above (detection limit 20 nM DIP).
296	Dissolved organic phosphorus (DOP) was quantified as the difference in DIP concentrations before
297	and after persulfate oxidation (i.e. DOP = TDP - DIP; DOP detection limit 40 nM).
298	
299	2.6. Nutrients and Chlorophyll-a
300	Water samples for determination of nutrient concentrations (nitrate+nitrite, nitrite, phosphate, and
301	silicic acid) were collected directly from the CTD into aged, acid-washed and Milli-Q-rinsed 60 mL
302	HDPE Nalgene TM bottles. Clean sampling and handling techniques were employed during the
303	sampling and manipulations within the laboratory, and where possible carried out according to the
304	International GO-SHIP nutrient manual recommendations (Hydes et al., 2010). Nutrient samples
305	were all analysed on board the RRS Discovery using a Bran and Luebbe segmented flow
306	colorimetric auto-analyser using techniques described in Woodward and Rees (2001). Nutrient
307	reference materials (KANSO Japan) were run each day to check analyser performance and to
308	guarantee the quality control of the final reported data. The typical uncertainty of the analytical
309	results were between 2 to 3%, and the limits of detection for nitrate and phosphate was 0.02 μmol
310	L ⁻¹ , nitrite 0.01 μmol L ⁻¹ , whilst silicic acid was always higher than the limits of detection. Further
311	details of the nutrient analysis and seasonal variability in nutrient inventories can be found in
312	Humphreys et al. (this issue)

313	Water samples (0.2-0.25 L) for chlorophyll-a extraction were filtered onto 25 mm diameter
314	Whatman GF/F or Fisherbrand MF300 glass fibre filters (effective pore sizes 0.7 $\mu m)$ and extracted
315	in 6 to 10 mL 90% acetone (HPLC grade, Sigma-Aldrich, UK) at -4°C for 18 to 24 h (Poulton et al.,
316	2014). Fluorescence was measured on a Turner Designs Trilogy fluorometer using a non-
317	acidification module and calibrated with a solid standard and a pure chlorophyll-a standard (Sigma-
318	Aldrich, UK).
319	2.7. Primary Production
320	Daily rates (dawn to dawn, 24 h) of primary production (i.e. Net Primary Production (NPP))
321	included in this paper were determined following the methodology outlined by Mayers et al. (this
322	issue) and Poulton et al. (2014). Seawater samples were collected from the same six light depths as
323	for P _i -uptake (see Section 2.3), directly from 20 L Niskin bottles on the CTD rosette into 500 mL
324	brown Nalgene TM bottles (10% Hydrochloric acid-washed, Milli-Q-rinsed) and transferred under
325	low light conditions to the on-board laboratory. In the laboratory, four (3 light, 1 formalin-killed
326	blank) 70 mL polycarbonate (Corning TM) bottles were filled per light depth. Carbon-14 (¹⁴ C)
327	labelled sodium bicarbonate (1258-1628 kBq) was added to each bottle and then three of the bottles
328	were incubated at the relevant light level in the CT container for 24 h (see Section 2.2). The fourth
329	sample (formalin-blank) had 1 mL of borate buffered formaldehyde (~1% final concentration)
330	added and was incubated alongside the other samples to measure abiotic uptake.
331	Incubations were terminated by filtering onto 25 mm 0.45 μm Whatman Nuclepore TM
332	polycarbonate filters, with extensive rinsing to remove any unfixed ¹⁴ C-labelled sodium bicarbonate
333	remaining on the filters. Organic (NPP) carbon fixation was determined using the micro-diffusion
334	technique (see Mayers et al., this issue) in 20 mL glass vials with 1 mL of 1% orthophosphoric acid
335	added to remove any ¹⁴ C-particulate inorganic carbon, and 10 to 15 mL of Ultima Gold TM
336	(PerkinElmer, Inc.) liquid scintillation cocktail added to each sample. The activity on the filters was
337	then determined on a Tri-Carb 3100TR liquid scintillation counter on-board. Spike activity was
338	checked by removal of triplicate 100 μL subsamples directly after spike addition and mixing with
339	$200~\mu L$ of β -phenylethylamine (Sigma-Aldrich, UK) followed by Ultima Gold TM addition and
340	liquid scintillation counting. The average RSD of triplicate NPP measurements was 15% (2-44%)
341	for November, 14% (1-59%) for April and 11% (1-42%) for July. The formalin blank consistently
342	represented less than 2% of NPP rates (cruise averages: 2%, November; 2%, April; 1%, July).
343	2.8. Phytoplankton and Bacterial Carbon
344	Cell abundances for the major phytoplankton groups were analysed from each sampling depth
345	within the euphotic zone, through either flow cytometry (for Synechococcus, pico-eukaryotes, nano-

346	eukaryotes, coccolithophores, cryptophytes, and bacteria) or light microscopy (for diatoms and
347	autotrophic dinoflagellates). Samples for flow cytometry were collected in clean 250 mL
348	polycarbonate bottles and analysed using a Becton Dickinson FACSort instrument (Tarran et al.,
349	2006) while samples for light microscopy were collected in 250 mL brown glass bottles and
350	preserved in acidic Lugol's solution (2% final solution) until analysis under an Olympus DMI4000B
351	microscope (Widdicombe et al., 2010).
352	Cell abundances from flow cytometer counts were converted to biomass using literature values
353	(Tarran et al., 2006): specifically, 8.58 fmol C cell ⁻¹ for <i>Synechococcus</i> , 2.7 fmol C cell ⁻¹ for
354	<i>Prochlorococcus</i> , 36.67 fmol C cell ⁻¹ for pico-eukaryotes, 0.76 pmol C cell ⁻¹ for nano-eukaryotes,
355	1.08 pmol C cell ⁻¹ for coccolithophores, and 1.97 pmol C cell ⁻¹ for cryptophytes. Heterotrophic
356	bacteria counts were converted to biomass using values of 1.58 fmol C cell-1 for 'High Nucleic
357	Acid'-containing cells and 0.91 fmol C cell ⁻¹ for 'Low Nucleic Acid'-containing cells. Cellular
358	biomass for light microscope counted taxa (diatoms and autotrophic dinoflagellates), were
359	estimated from cell dimensions following Kovala and Larrence (1966) on an individual species
360	basis. For the estimates of phytoplankton carbon used in this study, a geometric mean value for all
361	the species present in the Celtic Sea samples was used: specifically, 19.58 pmol C cell-1 for diatoms
362	and 85.25 pmol C cell ⁻¹ for autotrophic dinoflagellates.
363	3. Results
364	3.1. Seasonal changes in environmental conditions in the Celtic Sea
365	Clear seasonal variability (Table 1) at both study sites (CCS, CS2) was evident in terms of changes
366	in the depth and average temperature of the surface mixed layer (SML), as well as the surface
367	concentration of inorganic phosphate (P_i) and nitrate+nitrite (NO_x). The SML shallowed from ~50
368	m to ~20 to 30 m and warmed by ~6°C between April and July, while it was at its deepest (average
369	50 m) and at intermediate temperatures (12.8-13.9°C) in November (Table 1). Nutrient
370	concentrations (both Pi and NOx) were highest in early April and declined into low nutrient (Pi
371	$<$ 100 nmol P L^{-1} ; $NO_x <$ 20 nmol N L^{-1}) summer conditions in July (Table 1). Significant temporal
372	variability was also observed throughout April, with the SML shallowing (from 51 to 16 m) and
373	warming by ~1°C, accompanied by the drawdown of both P_i (~300 nmol $P L^{-1}$) and NO_x (5.5 μmol
374	$N\ L^{-1}$). The ratio of NO_x to P_i , expressed as the deficit of NO_x relative to that expected if the two
375	where in Redfield proportions (i.e. $N^* = NO_x - (16 \text{ x } P_i)$; see Moore et al., 2009), showed that shelf
376	waters were almost always depleted (relative to the Redfield ratio) in terms of NO_x , with most N^{\ast}
377	values well below zero across all three sampling periods (Table 1). In fact, the N* values per cruise
378	were very similar, with little seasonal variability, whereas the absolute N:P ratio (mol:mol) was low

379	in November and April (~8-12 and 3-12, respectively) and extremely low (<0.5) in July (data not
380	shown; see also Humphreys et al., this issue).
381	Seasonal patterns were also obvious in terms of incidental irradiance (E ₀) and SML average
382	irradiance (\bar{E}_{SML}), with both increasing from November to April and July (Table 1). November had
383	noticeably lower irradiance levels relative to both April and July, with the latter two months having
384	very similar irradiance levels despite differences in day length and euphotic zone depths (Table 1).
385	Euphotic zone depths in November were similar to SML depths, whereas SML depths were
386	generally shallow than euphotic zone depths in late April and July. Increasing \bar{E}_{SML} in April, in
387	parallel with nutrient drawdown, was associated with a shallowing of the SML rather than
388	increasing E ₀ , and highlights the role of water-column structure in spring bloom development
389	(Table 1).
390	Discrete measurements of P _i over the euphotic zone also showed clear seasonal variability between
391	the sampling periods (Fig. 2a), with vertical differences absent in November and April but clearly
392	present in July. Concentrations of P _i were highest in April (up to 500 nmol P L ⁻¹), varying from
393	~200 to 500 nmol P L ⁻¹ over the month, and lowest (<100 nmol P L ⁻¹) in July, apart from at the base
394	of the euphotic zone (>100-600 nmol P L ⁻¹) associated with a nutricline (Fig. 2a) and a Sub-surface
395	Chl-a Maximum (SCM; Fig. 2b). Euphotic zone Chl-a concentrations were also uniform with
396	sampling depth in November and April, while a SCM was evident in July with deep Chl-a
397	concentrations ranging from ~0.5 to 2.25 mg m ⁻³ (Fig. 2b). The highest Chl-a concentrations, and
398	greatest variability, were observed in April during the spring bloom, with Chl-a at depth ranging
399	from ~1 to 8 mg m ⁻³ (Fig. 2b). A slight variation to this pattern in April was observed at the deepest
400	sampling depth where Chl-a concentrations were consistently low (1-2 mg m ⁻³) and similar to
401	concentrations at depth in November (Fig. 2b).
402	In terms of DOP concentrations (Fig. 2c), average discrete depth measurements in the euphotic zone
403	were high and relatively similar in November (266 to 389 nmol P L ⁻¹) and April (241 to 438 nmol P
404	L ⁻¹), but slightly lower in July (169 to 271 nmol P L ⁻¹). No distinct depth pattern was evident
405	between November, April or July, with upper euphotic zone measurements similar to those found at
406	the base of the euphotic zone. In contrast to DOP, POP concentrations showed a different temporal
407	pattern, with the highest (> 75 nmol P L ⁻¹) concentrations in April rather than November or July
408	(<75 nmol P L ⁻¹), though this trend was most clearly seen in the upper sampling depths of the
409	euphotic zone (Fig. 2d). Average POP concentrations in April in the upper euphotic zone ranged
410	from 91 to 133 nmol P L ⁻¹ , with averages in November and July ranging from 28 to 46 nmol P L ⁻¹
411	and 23 to 51 nmol P L ⁻¹ , respectively.

3.2. Vertical profiles of Phosphate uptake

412

- Discrete measurements of P_i-uptake over the euphotic zone (Fig. 3a) also showed clear seasonal
- differences, with rates in April (>1.5 nmol P L⁻¹ d⁻¹) much higher than those in July (<1.5 nmol P L⁻¹
- 415 1 d⁻¹) or November (<0.4 nmol P L⁻¹ d⁻¹). Upper euphotic zone P_i-uptake rates ranged from 1.2 to
- 416 5.1 nmol P L⁻¹ h⁻¹ in April, 0.5 to 2.1 nmol P L⁻¹ h⁻¹ in July and 0.2 to 0.4 nmol P L⁻¹ h⁻¹ in
- November. Uptake of P_i across the incubation light gradients showed light-dependent variability in
- both November and April, being highest at the higher irradiance levels and decreasing with
- declining irradiance (Fig. 3a). In contrast, P_i-uptake in July showed no dependency on incubation
- 420 irradiance despite the absolute irradiance levels being identical to April, most likely due to limiting
- 421 P_i concentrations in July (Fig. 2a) and hence substrate rather than irradiance dependency.
- The ratio of light P_i-uptake to dark P_i-uptake was most often greater than 1, especially at irradiance
- levels greater than ~0.4 mol quanta m⁻² h⁻¹ during all three sampling periods (Fig. 3b). Ratios of
- light to dark P_i-uptake were only less than 1 at the very lowest irradiance levels (<0.1 mol quanta m⁻
- 425 ² h⁻¹) in November and April, whereas ratios rarely fell below 1 (or 1.5) during July. Ratios near
- unity for light to dark P_i-uptake highlight how there was very little difference between light and
- dark P_i-uptake rates in November and April, whereas a difference was more noticeable in July (Fig.
- 3b). For example, overall there was a 24% difference in average light and dark P_i-uptake rates in
- November (0.21 and 0.16 nmol P L⁻¹ h⁻¹, respectively), and a 40% difference in July (0.89 and 0.53
- 430 nmol P L⁻¹ h⁻¹, respectively).

431 3.3. Vertical profiles of DOP production

- The short-term production of DOP also showed clear seasonal differences, with rates being low
- 433 (<0.2 nmol P L⁻¹ h⁻¹) in both November and July and higher (and more variable) in April (often
- >0.5 nmol P L⁻¹ h⁻¹) (Fig. 4a). Production of DOP over the three sampling depths ranged from 0.07
- 435 to 0.39 nmol P L⁻¹ h⁻¹ in November, from 0.10 to 1.78 nmol P L⁻¹ h⁻¹ in April and from 0.02 to 0.24
- and P L⁻¹ h⁻¹ in July. Hence, although DOP production was similar in November and July, it was
- slightly lower in July than November, and in April it varied from levels seen in the other months to
- values 5 to 7 times higher. In all three sampling periods, no variability in DOP production occurred
- in association with changes in the incubation irradiances (Fig. 4a): light-availability had no obvious
- influence on DOP production. Ratios of light to dark DOP production were mostly greater than 1
- during all three sampling periods, with very few measurements showing ratios less than 1 (Fig. 4b).
- Light to dark DOP production ratios also showed no obvious variability in association with
- 443 incubation irradiance.

444	Expressing DOP production as a fraction of total P_i -uptake (i.e. the sum of P_i -uptake and DOP
445	production) shows clear patterns with sampling period and incubation irradiance (Fig. 4d). In
446	November, the percentage extracellular release of DOP was consistently greater than 25% and
447	increases up to 73% with decreasing incubation irradiance. A similar pattern was observed in April,
448	although the levels of DOP release were slightly lower (down to 5-10% in some cases) (Fig. 4d). In
449	contrast, DOP release in July was much lower (<20%) at all incubation irradiances, and in some
450	cases DOP release in July was less than 5% of total P _i -uptake. Clearly, when P _i concentrations are
451	at their lowest in July (<100 nmol P L ⁻¹ ; Fig. 2a), DOP extracellular release (Figs. 4a and 4d) was at
452	its lowest level, despite relatively high rates of P _i -uptake (Fig. 3a).
453	3.4. Integrated euphotic zone inventories
454	Nutrient concentrations and rates of P cycling were integrated across the euphotic layer for all 3
455	cruises (November, April and July), which we considered to roughly match the SML in November
456	and early April, and then constrain both the SML and thermocline (and SCM) in late April and July
457	(see Table 1). Rates of NPP, P _i -uptake and DOP release were scaled to daily integrals.
458	Euphotic zone integrals of Chl-a showed a clear seasonal progression of the phytoplankton
459	communities, with average Chl-a concentrations highest in April (37.8-152.6 mg m ⁻²), intermediate
460	in November (37.4-70.8 mg m $^{-2}$) and lowest in July (17.2-35.7 mg m $^{-2}$). Within April, Chl- a
461	concentrations went from 49.6 mg m ⁻² in early April to a peak value of 152.6 mg m ⁻² in mid-April,
462	which then decreased again towards the end of the month (Table 2). The mid-April Chl-a peak was
463	associated with the spring bloom at the CCS site (Mayers et al., this issue) and discrete water-
464	column Chl-a concentrations were as high as 8 mg m ⁻³ (Fig. 2b). Increasing Chl-a concentrations
465	throughout April were associated with a significant drawdown of P _i , as shown by declining P _i
466	integrals from a high of 18.3 mmol P m ⁻² to values similar to those observed in November and July
467	(i.e. $<$ 10 mmol P m $^{-2}$; Table 2). However, the depth distribution of P_i was drastically different
468	between these two months (Fig. 2a): in November, moderate P_i concentrations (175-225 nmol $P\ L^{-1}$)
469	occurred throughout the water-column, while in July $P_{\rm i}$ concentrations were extremely low (<100
470	nmol $P L^{-1}$) in the upper water-column and increased dramatically (up to 600 nmol $P L^{-1}$) in
471	association with the nutricline (and SCM). Despite the presence of a SCM in July (Fig. 2b), this
472	month had the lowest water-column inventories for Chl-a (Table 2).
473	As with Chl- a measurements, estimates of euphotic zone integrated phytoplankton biomass (C_{phyto}),
474	based on conversion of cell counts, showed clear seasonal progression from low values in
475	November and July to peak concentrations in April (Table 2). Generally, estimates of C _{phyto} were
476	over 100 mmol C m ⁻² during April and less than 80 to 90 mmol C m ⁻² during the other sampling

477	periods. Estimated integrated bacteria biomass (C_{bact}) showed a similar seasonal pattern to C_{phyto} ,
478	relatively low and similar during November and July (ranges 24-32 and 23-33 mmol C m ⁻² ,
479	respectively) and peaking during April (27-182 mmol C m ⁻²) (Table 2). April was also associated
480	with an increase over time at CCS from low C_{bact} (~50 mmol C m ⁻²) to high values around the peak
481	in Chl-a around the latter half of the month (>140 mmol C m ⁻²). Ratios of C _{bact} to C _{phyto} (data not
482	shown) were on average 0.34 (range 0.31-0.36) in November and 0.25 in July (0.17-0.37), and
483	increased to an average of 0.48 (0.29-0.82) in April, again showing a temporal progression as the
484	spring bloom peaked and nutrients declined.
485	Integrated net primary production (NPP) mirrored the seasonal changes in Chl-a concentrations,
486	with rates low in November (average 32.4 mmol C m ⁻² d ⁻¹) and July (average 35.4 mmol C m ⁻² d ⁻¹),
487	and peaking in mid-April at ~0.5 mol C m ⁻² d ⁻¹ (Table 2). As with Chl-a, April showed relatively
488	low rates of NPP (<120 mmol C m ⁻² d ⁻¹) early in the month, a peak on the 15 th April and a decline
489	to values roughly half of the peak (132-321 mmol C m ⁻² d ⁻¹) at the end of the month. Clearly, the
490	spring bloom in 2015 at CCS was associated with significant carbon fixation (see also Mayers et al.,
491	this issue). Normalising NPP to Chl-a concentrations shows a similar seasonal pattern in terms of
492	the NPP per unit of phytoplankton biomass (Table 2). Integrated Chl-a normalised NPP rates were
493	similar in November (average 0.7 gC (g Chl) ⁻¹ h ⁻¹) and July (average 1.1 gC (g Chl) ⁻¹ h ⁻¹), and
494	peaked in mid-April with maximum values of 3.0 gC (g Chl) ⁻¹ h ⁻¹ (average 2.0 gC (g Chl) ⁻¹ h ⁻¹)
495	(Table 2). Such Chl-a normalised NPP rates indicate that phytoplankton communities in November
496	and July were fixing (photosynthetically) around the same amount of C per gram of (Chl-a)
497	biomass, while the community in April fixed almost double the amount for the same level of (Chl-
498	a) biomass.
499	Euphotic zone integrals of POP showed a similar April peak to Chl-a and NPP, with the highest
500	values in April (range 1.0 to 3.5 mmol P m ⁻² , average 2.3 mmol P m ⁻²), and with lower and more
501	similar values in July (1.0-2.0 mmol P m^{-2}) and November (1.0-2.2 mmol P m^{-2}) (Table 2). Some of
502	the highest integrated POP values (>3 mmol P m ⁻²) occurred in association with the high levels of
503	Chl-a and NPP in mid-April at CCS. In contrast to POP (Chl-a and NPP), water-column integrated
504	DOP concentrations showed a different seasonal pattern with values in November being the highest
505	(11-25 mmol P m ⁻²), and with lower values in April (6-13 mmol P m ⁻²) and July (3-10 mmol P m ⁻²)
506	(Table 2; see also Davis et al., this issue). In both April and July, integrated DOP concentrations
507	were roughly equivalent to the size of the ambient P _i pool in the euphotic zone, while in November
508	DOP concentrations were slightly higher than P _i . Though significant P _i drawdown was seen during
509	April, there was no concurrent increase in the DOP pool, which only varied in size by ~6 to 7 mmol

510	$P m^{-2}$ relative to a clear P_i drawdown of ~12 mmol $P m^{-2}$ and a ~2 to 3 mmol $P m^{-2}$ increase in POP
511	(Table 2).
512	The seasonal pattern of euphotic zone integrated P _i -uptake showed a peak in April (average 1.61 mmol P m ⁻² d ⁻¹), with the July average roughly half of that in April (0.84 mmol P m ⁻² d ⁻¹) and the
513	
514	lowest rates (<0.30 mmol P m-2 d-1) in November (Table 2). The highest rate of integrated P _i -
515	uptake occurred in mid-April (2.08 mmol P m ⁻² d ⁻¹) in association with the peak values of Chl-a and
516	NPP. However, unlike Chl-a and NPP, the P _i -uptake rates throughout April were much higher
517	(generally >1.3 mmol P m ⁻² d ⁻¹) than those measured during the other sampling periods (range 0.14-
518	0.30 mmol P m ⁻² d ⁻¹ for November and 0.48-1.18 mmol P m ⁻² d ⁻¹ for July). In the case of integrated
519	DOP production (Table 2), the highest values occurred in April (average 0.49 mmol P m ⁻² d ⁻¹), with
520	values in November ~3 times higher (average 0.17 mmol P m ⁻² d ⁻¹) than those in July (average 0.05
521	mmol P m ⁻² d ⁻¹). This pattern contrasts to that of the integrated P _i -uptake, with the highest DOP
522	production (>0.8 mmol P m ⁻² d ⁻¹) occurring not in association with the peak in P _i -uptake, Chl-a or
523	NPP but rather 5 to 9 days later in April (Table 2). When integrated DOP production is expressed as
524	a fraction of total P _i -uptake (see Section 3.3) there are strong differences between the three
525	sampling periods (Table 2); DOP production represents (on average) a much higher fraction of total
526	P _i -uptake in November (41%) than in April (21%) or July (6%) (Table 2). The percentage
527	extracellular release of DOP was extremely low (<5%) in some cases in early July, with the low
528	values (<15%) seen in July only observed elsewhere during early April, well before the
529	development of the spring bloom and peak Chl-a around the 15th April.
5 20	A Discounting
530	4. Discussion
531	4.1. The dynamics of Phosphate uptake
532	The uptake of nutrients (N, P) and photosynthetic C-fixation, and the resulting stoichiometric
533	balance of cellular constituents vary on timescales from almost instantaneous to daily adjustments
534	(e.g., Geider and La Roche, 2002; Rees et al., 1999; Talmy et al., 2014; Lopez et al., 2016).
535	Ecological interactions also occur across various timescales, resulting in stoichiometric balances
536	that vary in time and space, with important implications for the biogeochemistry of marine
537	ecosystems (Sterner and Elser, 2002). Short-term measurements need to be scaled to the appropriate
538	integrated time- and depth-scales (e.g. daily, euphotic zone), and with clear perspectives on what is
539	(or is not) measured is required prior to examining system-scale biogeochemical processes.
540	The potentially rapid recycling of P leads to the requirement that uptake (and release) measurements
541	are considered over short-time periods, whereas photosynthetic C-fixation occurs throughout the
542	(seasonally variable) daylight period. Short-term P _i -uptake measurements are often scaled to a 24 h

543	period, with the inherent assumption that uptake rates are temporally invariable. To examine this,
544	we undertook two time-series incubations of Pi-uptake, with measurements every 4 h over a period
545	of 24 h (Fig. 5). One time-series incubation began at 6 am (local time) on the 17 th July and the
546	second at 9 am (local time) on the 23^{rd} July, with both experiments showing a steady increase in P_{i} -
547	uptake prior to sunset and then a slight decline during the night (Fig. 5a). Average P _i -uptake (±
548	S.D.) for these incubations was 0.72 ± 0.20 and 0.92 ± 0.22 nmol P L ⁻¹ h ⁻¹ , respectively, which are
549	higher than the initial 4 h measurements (0.43 \pm 0.06 and 0.67 \pm 0.08 nmol P L ⁻¹ h ⁻¹ , respectively).
550	If the initial measurements are scaled by 24 h, daily rates of 9.6 nmol P L ⁻¹ d ⁻¹ and 16.8 nmol P L ⁻¹
551	d ⁻¹ are calculated, which are 26 to 47% less than the cumulative 24 h rates (Fig. 5b). These results
552	caution that short-term rates of P _i -uptake may vary during day- and night-time periods, and hence
553	scaling these initial rates may result in a significant underestimation of daily P _i -uptake.
554	However, these results should also be viewed cautiously, as they represent only two time-series of
555	P _i -uptake, when P _i concentrations were at their lowest seasonal level (Table 1). Further time-series
556	of Pi-uptake need to be considered in the context of diurnal changes in cellular metabolism, and
557	between different components of the plankton (bacteria, phytoplankton). Interpretation of diurnal
558	changes in P _i -uptake may also be complicated if, for example, P _i concentrations and biomass are not
559	constant in the incubations (neither of which were measured in our experiments). Though we
560	acknowledge that short-term P _i -uptake measurements may not simply scale with day length (Fig. 5),
561	to make our observations consistent with the existing literature (e.g., Reynolds et al., 2014) we have
562	retained simple scaling to day lengths. Furthermore, the focus of the present study was to examine
563	seasonal (inter-cruise) differences in P _i -uptake and such overestimates may be systematic for each
564	sampling period.
565	Both bacteria and phytoplankton are involved in P uptake in marine systems (Popendorf and
566	Duhamel, 2015), with phytoplankton P _i -uptake related to some extent by light availability whilst
567	bacterial uptake may be unrelated to light level. Across all three seasonal sampling periods, rates of
568	both P _i -uptake and DOP production in light-exposed (L) incubations were higher than those
569	incubated in the dark (D), with L:D ratios consistently greater than 1 (Figs. 3b and 4b). For P _i -
570	uptake, L:D ratios were greater than 1.5 at the highest incubation irradiances (>0.6 mol quanta m ⁻²
571	h ⁻¹) in November and April, and across most of the light gradient in July. Light availability clearly
572	enhanced P _i -uptake, which may be analogous to the reduced rates of P _i -uptake during the night-time
573	time-series experiments (Fig. 5a).
574	In the case of DOP production, L:D ratios were also slightly higher than 1 during July, and in
575	general the L:D ratios were similar in magnitude and trend to those seen in P _i -uptake (Fig. 4b):
576	hence the irradiance-influence on P _i -uptake was mirrored in the subsequent release of DOP, though

577	the relative percentage extracellular release of DOP differed seasonally (Fig. 4d). Ratios of L:D P _i -
578	uptake in other studies have also been found to be greater than 1, for example in the North Atlantic
579	(Donald et al., 2001) and Pacific Ocean (Duhamel et al., 2012), although ratios closer to 1 have
580	been reported from the North Pacific subtropical gyre (Björkman et al. 2000). Variability in L:D
581	uptake ratios likely reflects the relative contribution of phytoplankton and bacteria, as well as
582	seasonal variability in substrate (P_i) availability and energetic (light, C) constraints on P_i -uptake and
583	cellular P-demands (Sterner and Elser, 2002; Björkman et al., 2000).
584	Competition between bacteria and phytoplankton for P is a strong driver of biogeochemistry in
585	marine ecosystems (Thingstad et al., 1993, 1996; Popendorf and Duhamel, 2015). Previous studies
586	of planktonic P _i -uptake have shown differentiated bacterial and algal P-uptake using different pore-
587	sized filters, for example considering bacterial uptake as from cells less than 0.6 μm and algal
588	uptake from cells greater than 0.6 µm (e.g., Duhamel and Moutin, 2009). However, both bacterial
589	and algal cell sizes are variable with taxonomy and physiological status and may overlap in size-
590	distribution; for example, the cyanobacteria Synechococcus, which is numerically dominant in the
591	Celtic Sea in summer (Hickman et al., 2012), and ranges in cell size in association with growth rate
592	and nutrient conditions (Lopez et al., 2016). In this study, 0.45 µm filters were used to ensure that
593	P _i -uptake from Synechococcus was fully included in our measurements at the same time as (partly)
594	excluding the influence of heterotrophic bacteria.
595	To test this assumption, size-fractionation experiments were performed during summer with
596	samples size-fractionated (0.2, 0.45, 0.8 and 2 µm) post-incubation to determine the P _i -uptake by
597	different fractions (Supplementary Fig. S1). These experiments indicated that the 0.45 µm P _i -uptake
598	represented on average 55% (range 32-84%) of the total (0.2 μm) P _i -uptake, while the 0.8 μm
599	fraction represented 36% (19-42%), and the greater than 2 µm fraction 14% (10-19%). These
600	differential contributions are similar to those found by Duhamel and Moutin (2009) (~15-43% 0.2-
501	$0.6 \mu m$, ~20-75% 0.6 -2 μm , ~10-50% >2 μm), implying that although the use of $0.45 \mu m$ filters
602	removed a proportion of bacterial P_i -uptake (0.2-0.45 μm), our measurements of P_i -uptake may not
603	be exclusively from phytoplankton and likely include some bacterial P _i -uptake. Hence, when
604	considering the P-dynamics observed seasonally the composition of the plankton community in
605	terms of both phytoplankton and bacteria needs to be considered.
606	4.2. Seasonal changes in Phosphate uptake and DOP release in the Celtic Sea
607	Observations from November to July in the Celtic Sea showed clear seasonal patterns in plankton
808	community composition (Mayers et al., this issue; Giering et al., this issue) and biogeochemical

processes (Garcia-Martin et al., this issue-A & B). Phytoplankton biomass (Chl- α and C_{phyto}) and

610	NPP both peaked in April and diverged in November and July, with Chl-a levels halved in July
611	relative to November, although levels of C_{phyto} and NPP were more similar (Tables 1 and 2). This
612	divergence is linked to seasonality in C to Chl-a ratios at CCS; using the cruise average values for
613	C _{phyto} and Chl-a from Table 2, we calculated C:Chl-a ratios (g:g) of 16 for November, 26 for April
614	and 53 for July. Such estimates are similar to those made by Holligan et al. (1984) for summer in
615	the Celtic Sea, and are driven by cellular responses to seasonal variability in resource (light,
616	nutrients) availability (Geider, 1987; Artega et al., 2016).
617	Seasonality in C:Chl-a ratios in the Celtic Sea link to variability in P _i (and NO _x) concentrations and
618	average surface mixed layer irradiances (\bar{E}_{SML} ; Table 1); with low \bar{E}_{SML} and high P_i in November
619	and high \bar{E}_{SML} and low P_i in July. Phytoplankton dynamics in autumn may be considered light-
620	driven while summer was nutrient-driven, with spring a transition between these two. Light levels
621	(\bar{E}_{SML}) in November were low (average: 1.9 mol quanta m ⁻² d ⁻¹ , Table 1), only slightly above the
622	critical compensation irradiance for net growth in North Atlantic phytoplankton communities (1.3
623	mol quanta m ⁻² d ⁻¹ , Siegel et al., 2002), and lower than levels suggested to limit Southern Ocean
624	communities (3 mol quanta m^{-2} d^{-1} , Venables and Moore, 2010). Nitrogen (nitrate, NO_x) availability
625	has been proposed previously to limit primary production during summer in the Celtic Sea
626	(Pemberton et al., 2004; Davis et al., 2014). Low N* values seen at CCS support such a conclusion,
627	along with depletion of NO_x below detection levels ($<20~\text{nM}$) in July whilst P_i remained above 55
628	nM (Table 1).
629	As well as phytoplankton biomass (Chl-a, C _{phyto}) and NPP, particulate organic phosphorus (POP)
630	also peaked in April (average: 2.3 mmol P m ⁻²) whilst concentrations in November and July were
631	relatively similar (1.4 and 1.5 mmol P m ⁻² , respectively) (Table 2). Cruise averages (and ranges) for
632	euphotic zone integrated DOP concentrations (Table 2) were twice as high in November (11-25
633	mmol P m ⁻²) relative to April (6-13 mmol P m ⁻²) and July (3-10 mmol P m ⁻²), with the summer
634	values the lowest overall. This is the same pattern as seen by Davis et al. (this issue) for the SML in
635	the Celtic Sea from a larger number of stations, with summer conditions also associated with the
636	lowest water-column (0-150 m) integrated DOP. Lower DOP concentrations in summer are likely to
637	be associated with the lower production rates (Fig. 4a, Table 2) and advective losses, as well as the
638	possible utilization of DOP (see Davis et al., this issue), which may occur in severely P-stressed
639	conditions (Dyhram and Ruttenberg, 2006; Dyhram et al., 2007; Duhamel et al., 2014). Summation
640	of the different P pools (Pi, POP and DOP) at CCS shows only a slight decline in the total P pool
641	over time (averages: 29.4 to 24.2 mmol P m ⁻² from November to April, down to 12.2 mmol P m ⁻² in
642	July). The proportion of total P in the DOP and P_i pools remained 45 to 56% and 34 to 39%,
643	respectively, while the fraction in the POP pool increased slightly from 5% in autumn to 14% in

644	summer (data not shown). Hence, there was a loss of P from the euphotic zone that may have been
645	linked to the sinking of particulate material below the thermocline and/or the advection of semi-
646	labile DOP (Reynolds et al., 2014; Davis et al., this issue).
647	April was also associated with a peak in P _i -uptake, with rates in July four times higher than those in
648	November, despite the reduced nutrient concentrations and P _i pool size (Tables 1 and 2). The
649	affinity of the plankton community for P _i -uptake can be assessed by examining the biomass-specific
650	turnover rate ($1/P_i$ turnover \times POP), where biomass is represented by POP and the units are
651	proportional to the volume of water cleared of substrate per unit biomass per unit time (Thingstad
652	and Rassoulzadegan, 1999; Tambi et al., 2009). For CCS, average values calculated this way for
653	November were 1.1 L pmol P ⁻¹ h ⁻¹ and were 5-times higher in April (5.4 L pmol P ⁻¹ h ⁻¹) and 10-
654	times higher in July (11.1 L pmol P^{-1} h^{-1}); indicating that the affinity for P_i -uptake was highest in
655	summer rather than spring. The amount of this P_{i} taken up by the plankton that was then released as
656	DOP varied considerably between April and July, with the percentage extracellular release of DOP
657	highest in November (31-58%), then declining in April (7-45%) to a minimum in July (2-11%)
658	(Table 2).
659	To conclude, the summertime planktonic ecosystem in the Celtic Sea was highly efficient at P _i -
660	uptake and P-retention when P_i concentrations were low, and N-availability limited ecosystem
661	productivity. Such a system, with a high biomass-normalised affinity for P _i -uptake, had high rates
662	of recycling supporting relatively high rates of NPP (and Pi-uptake). Rates of NPP in summer were
663	also supported by regenerated sources of N rather than inorganic forms (Humphreys et al., this
664	issue). In contrast, the autumn ecosystem was the least efficient at P _i -uptake or P-retention, with
665	light as the most likely limiting factor for this community. In autumn, Pi-concentrations were also
666	relatively high and sufficient to support the low rates of NPP and P _i -uptake observed, with a
667	potentially light-limited system with a low affinity for P-cycling. Spring was a transitional period,
668	with the ecosystem evolving from a light-limited system as the water-column stratified and rates of
669	P _i -uptake and DOP production increased. The latter half of spring differs from the summer, as
670	despite the decline in Pi concentrations, P-retention remained low whilst summer conditions were
671	associated with efficient P-retention. The later stages of the spring bloom does not appear to be
672	characterised by well-developed P-recycling mechanisms, and DOP production may be driven by
673	high mortality related losses due to zooplankton (Mayers et al., this issue).
674	4.3. Seasonal changes in the turnover of the different P pools in the Celtic Sea
675	Consideration of pool sizes and uptake rates only gives limited insights into biogeochemical

processes. Rather, consideration of the turnover rates of the different pools accounts for both the

677	relative pool size and uptake rate, providing further information on the dynamics of the system
678	(Benitez-Nelson, 2000). Short turnover times (a few hours or days) implies rapid biological
679	utilization, whilst longer turnover times (weeks or longer) indicate a lack of bioavailability or lower
680	requirements (Benitez-Nelson, 2000). Comparison of turnover times of related pools (e.g., C _{phyto}
681	and POC; Poulton et al., 2006) may also provide further insights into underlying ecological and
682	biogeochemical processes.
683	Phytoplankton turnover times, calculated from C_{phyto} and NPP (following Leynaert et al., 2000; see
684	also Poulton et al., 2006), show strong seasonality with short turnover times (<1 day) in April
685	compared with longer turnover times in both November and July (1.5-2.2 d and 1.1-4.4 d,
686	respectively) (Table 3). This seasonality in phytoplankton turnover times supports the suggestion of
687	light-limited growth in autumn and nutrient-stress in summer, as well as the rapid development of
688	the spring bloom through April (Table 2; see also Mayers et al., this issue; Garcia-Martin et al., this
689	issue-B). Inefficient utilization of the P _i pool in autumn relative to efficient utilization in spring and
690	summer is also supported by the seasonal differences in turnover times of this pool; from 21.9 to
691	42.3 d in November to 2.7 to 8.8 d in July, with turnover times in April declining from 8.9 d to 2.2
692	d (Table 3).
693	Turnover of the POP pool was slowest in November (2.8-4.9 d), with slightly faster turnover of
694	C _{phyto} (average 1.7 d) relative to POP (average 3.9 d), which may be indicative of plankton other
695	than phytoplankton (i.e., heterotrophic bacteria) strongly contributing to the POP pool. The
696	relatively rapid turnover of Pi and POP during summer and late spring, when Pi concentrations were
697	depleted (<10 mmol P m ⁻² ; Table 2), also implies efficient P-recycling (Benitez-Nelson and
698	Buesseler, 1999), even though these turnover times are longer than the very rapid turnover (<1 d)
699	observed in P-limited open-ocean regions (e.g., Sohm and Capone, 2010). This efficient P-recycling
700	in the Celtic Sea during summer, as well as utilisation of regenerated forms of N (Humphreys et al.,
701	this issue), supported similar levels of NPP to autumn, as well as relatively high rates of Pi-uptake
702	despite the seasonal differences in P _i availability (Table 2).
703	Turnover times for POP in April and July were surprisingly similar (0.5-1.3 d and 1.0-1.4 d,
704	respectively) when considering the much longer C_{phyto} turnover times in July (1.1-4.4 d; Table 3).
705	One interpretation of this discrepancy is that the two pools were composed of different components
706	during July, for example a greater heterotrophic bacterial contribution (or activity) in July than
707	November or April. Estimates of euphotic zone integrated bacterial biomass (C _{bact} ; Table 2) were
708	very similar in autumn and summer, and highest in spring. However, bacterial growth efficiency,
709	due to low respiratory C-losses and high C-fixation, were highest in July (61 \pm 5%) rather than in
710	November (27 \pm 3%) or April (36 \pm 6%) (Garcia-Martin et al., this issue-A). Though summer C_{bact}

711	was similar to levels seen in autumn (and lower than in spring), its turnover time was much shorter
712	in summer; combining average values of bacterial production (see Garcia-Martin et al. this issue-A)
713	with average integrated bacterial biomass (Table 2) gives turnover times of 1.2 d in July, 4.7 d in
714	November and 5.6 d in April. These C_{bact} turnover times are similar to those for the POP pool in
715	both July and November (1.1 d and 3.9 d, respectively), but not in April (0.9 d) (Table 3). These
716	similarities likely indicate a significant bacterial contribution to both P _i -uptake rates and the POP
717	pool in summer and autumn. Though C_{bact} increased relative to C_{phyto} in spring (Table 2), bacterial
718	production remained low due to low growth efficiencies (Garcia-Martin et al., this issue-A),
719	suggesting that bacteria had less influence on P _i -uptake in spring than in autumn or summer.
720	The turnover times for the DOP pool were much longer (>40 d) than those for the other pools
721	(Table 3), although much shorter turnover (<10 d) did occur during late April. Slow turnover of
722	DOP in November was driven by relatively high DOP concentrations (11-25 mmol P m ⁻²) and
723	moderate DOP production (0.11-0.28 mmol P m ⁻² d ⁻¹), although this sampling period also had the
724	highest overall relative percentage extracellular release (31-58%) (Table 3). July had similar slow
725	rates of DOP turnover to November (Table 3), although lower DOP concentrations and DOP
726	production rates (and the lowest overall extracellular release, ranging from 2-11%) (Table 2).
727	Hence, during both autumn and summer the DOP pool was largely inactive, with a large pool size
728	relative to low rates of DOP production. A contrasting situation was found in the Celtic Sea during
729	spring, especially during the latter half of the bloom where concentrations of P _i declined below 10
730	mmol P m ⁻² (<200 nmol P L ⁻¹) and DOP production rates increased above ~0.5 mmol P m ⁻² d ⁻¹
731	(Tables 1 and 2). Relatively short turnover times (range 4-17 d; Table 3) during the latter half of
732	April could potentially indicate a degree of DOP utilization by the plankton community during the
733	latter stages of the spring bloom, as inorganic nutrient sources declined (and both C_{phyto} and C_{bact}
734	increased; Table 2), and where the bioavailability of DOP may have increased (see Björkman et al.,
735	2000; Björkman and Karl, 2003).
736	The turnover times of the different C and P pools in the Celtic Sea provide support to the
737	suggestions of seasonal patterns in resource availability and their influence on P dynamics. Slow $P_{\rm i}$
738	turnover in autumn was caused by the low-affinity ecosystem present, with inefficient P-dynamics
739	driven by light-limitation. In spring and summer, $P_{\rm i}$ availability became increasingly important with
740	a succession to a summer-time high-affinity ecosystem and efficient P dynamics. Summer was also
741	potentially associated with a strong bacterial influence on P dynamics. DOP turnover was relatively
742	slow throughout spring, summer and fall, indicating little biological utilization of this P-pool. The
743	lack of accumulation of DOP during summer contrasts with a previous Celtic Sea study by Davis et
744	al. (2014), potentially due to the low production rates observed in summer in this study.

/45	4.4. Seasonality in particulate stoicniometry in the Celtic Sea
746	The last two sections have highlighted how seasonal variability in P _i -uptake and P-retention in the
747	Celtic Sea is related to both the composition of the plankton community (C_{phyto} , C_{bact}) and resource
748	(P _i , light) availability. Light-limitation led to an ecosystem composed of slow growing
749	phytoplankton and bacteria with inefficient P _i -uptake or P-retention. Low nutrient concentrations
750	(P _i , NO _x) in summer led to an efficient recycling ecosystem with slow-growing phytoplankton and
751	fast-growing bacteria influencing both high Pi-uptake and low DOP production. The spring bloom
752	was transitional between these two situations, with fast growing phytoplankton dominating Pi-
753	uptake and increasing DOP production as nutrient availability declined (Pi, NOx). Such seasonal
754	variability in P _i -uptake, DOP production, plankton composition and NPP (C-fixation) will all result
755	in variability in the stoichiometric ratio of planktonic C to P uptake.
756	Taking the ratio of NPP to P _i -uptake (mol:mol) as indicative of the planktonic C:P (i.e. DIC:P _i)
757	uptake ratio shows clear seasonality (Table 3). Average ratios of NPP:P _i -uptake for each sampling
758	period ranged from 132 (range: 75-188) in November, to 116 (54-256) in April and 44 (21-53) in
759	July. Relative to the Redfield ratio (106:1), these ratios indicate a seasonal transition from slightly
760	C-rich uptake in autumn (and late spring) to strongly P-rich uptake in summer (and early spring)
761	(Table 3). If total P_i -uptake (i.e., $tP_i = P_i$ -uptake + DOP production) is considered, then the
762	relatively high percentage extracellular release of DOP during autumn and late spring lead to C:P
763	ratios which are strongly P-rich relative to the Redfield ratio; with cruise averages of 81 (range: 37-
764	123) in November, 90 (46-195) in April and 42 (20-68) in July (Table 3). However, whether net or
765	total P _i -uptake are considered, autumn and spring are still, on average, more C-rich in their uptake
766	rates than summer, which was more P-rich.
767	In autumn, NPP:P _i -uptake ratios close to (and slightly higher) than the Redfield ratio were
768	associated with an ecosystem which was potentially light-limited, with low rates of NPP and P _i -
769	uptake, high DOP production and, though growing slowly, a bacterial influence. The spring bloom
770	was associated with a transition from light-limitation to low nutrient conditions as P _i concentrations
771	declined, with rapid phytoplankton turnover times (i.e., fast growth rates) slowing as resource
772	availability declined. NPP increased to a peak in spring and then declined slightly with nutrient
773	concentrations, whereas P _i -uptake remained high despite the decline in nutrient concentrations
774	(Tables 1 and 2). The ratio of NPP:P _i -uptake was low (P-rich) during early spring in association
775	with rapid phytoplankton growth rates, as is expected in nutrient-replete and optimal growth
776	conditions (Sterner and Elser, 2002), and then the ratio increased (C-rich) as growth slowed and
777	nutrient levels declined (Tables 2 and 3). This pattern in C:P uptake stoichiometry, from P-rich

organic matter formation in early spring to C-rich production in late spring, agrees well with

779	Humphreys et al. (this issue), who came to the same conclusion based on nutrient and dissolved
780	inorganic carbon dynamics during April.
781	The low NPP:P _i -uptake ratios (P-rich) in summer were not associated with rapid phytoplankton
782	growth (Table 3), but rather with high bacterial growth rates and a stronger bacterial influence on
783	C:P uptake (and retention). Heterotrophic bacteria are recognised as strong competitors for P _i under
784	nutrient depleted conditions (Thingstad et al., 1993, 1996; Duhamel and Moutin, 2009). Whilst
785	phytoplankton cellular C:P stoichiometry is near, or slightly lower, than the Redfield ratio (Geider
786	and LaRoche, 2002; Ho et al., 2003), bacterial cellular C:P ratios are significantly more P-rich (e.g.,
787	~50; Fagerbakke et al., 1996; Sterner and Elser, 2002; Hessen et al., 2004; Duhamel and Moutin,
788	2009; see also Scott et al., 2012). Thus, it is suggested that the relatively P-rich uptake ratios in
789	summer relate to a stronger bacterial influence on P_i -uptake through increased competition as P_i
790	availability was low, bacterial growth efficiency was high (Garcia-Martin et al., this issue-A) and
791	phytoplankton growth rates were relatively low.
792	4.5. Implications for the Continental Shelf Pump
793	When considering the Continental Shelf Pump (CSP), C-overconsumption relative to nutrient
794	utilization (N, P) is an important factor in regulating the magnitude and efficiency of the CSP. Such
795	C-overconsumption has been suggested to occur during the nutrient-impoverished summer period,
796	when nutrient-starved phytoplankton may have high cellular C:P and excrete C-rich dissolved
797	organic matter (Toggweiler et al., 1993; Thomas et al., 2004, 2005; Bozec et al., 2006; Kühn et al.,
798	2010). In the Celtic Sea, Davis et al. (this issue) observed that both the particulate and dissolved
799	pools showed seasonal succession in becoming increasingly C-rich relative to the Redfield ratio
800	from autumn through spring and into summer. In this context, our observations of P-rich uptake in
801	July may appear paradoxical, however what they imply is that significantly more C-rich
802	biogeochemical processes must be balancing out the influence of plankton uptake stoichiometry on
803	particulate and dissolved organic matter stoichiometry.
804	In the case of particulate material in summer, when bacteria appear to dominate P-uptake and
805	retention, other components of the plankton (phytoplankton, zooplankton), as well as detrital
806	material, may all be relatively C-rich. Slow-growing phytoplankton in summer (Table 3) still
807	represented more biomass than bacteria (C_{bact} : $C_{phyto} \sim 0.17$ -0.37) and hence may be more influential
808	on particulate stoichiometry than nutrient recycling. For the dissolved pool in summer, the plankton
809	community may excrete large quantities of dissolved organic carbon (see Garcia-Martin et al., this
810	issue A), whereas our observations indicate that they are releasing very little in terms of DOP.
811	Hence, the dissolved organic matter pool in summer will become strongly enriched in C, with

812	results from Davis et al. (this issue) showing the summertime DOM pool had C:P ratios 3 times
813	higher than the Redfield ratio (see also Humphreys et al., this issue). Overall, our results have two
814	important implications for the CSP: 1) both autotrophs and heterotrophs seasonally influence
815	nutrient (P, N) recycling and uptake (C:P) stoichiometry, and 2) there is a tendency for uptake (C:P)
816	stoichiometry to be nutrient-rich rather than strongly C-rich, as would be expected to support an
817	efficient CSP. Hence, for a nutrient-efficient CSP (and C-overconsumption), other biogeochemical
818	processes involved (e.g. DOM production, particulate remineralisation) need to be relatively C-rich
819	to balance out the influence of uptake stoichiometry.
820	5. Conclusions
821	In this study, seasonal variability in P _i -uptake and DOP production in the Celtic Sea was related to
822	both the composition of the plankton community (C_{phyto} , C_{bact}) and resource (P_i , light, NO_x)
823	availability. In autumn, light-limitation led to an ecosystem composed of slow-growing
824	phytoplankton and bacteria with relatively low P _i -uptake and with high DOP production. In
825	summer, low nutrients (low Pi, depleted NOx) led to an efficient recycling ecosystem supporting
826	relatively high NPP with slow-growing phytoplankton, and fast-growing bacteria influencing high
827	P _i -uptake and low DOP production. The spring bloom in the Celtic Sea was transitional between
828	these two situations, with fast-growing phytoplankton dominating P _i -uptake with increasing DOP
829	production (in absolute and relative terms) as inorganic nutrients declined (Pi, NOx) towards the
830	latter stages of the bloom.
831	These seasonal changes in ecosystem dynamics were associated with changes in the ratio of C to P
832	uptake, as described by the ratio of NPP to P_{i} -uptake in this study, with the summer relatively more
833	P-rich in terms of uptake than autumn or spring. Such P-rich uptake was associated with a stronger
834	influence of actively growing heterotrophic bacteria rather than phytoplankton activity, whereas P-
835	rich uptake in early spring was associated with fast phytoplankton growth in optimal growth
836	(bloom) conditions. In terms of our original hypotheses, P-rich uptake associated with fast
837	phytoplankton growth in the spring bloom goes against the first hypothesis (i.e. that optimal growth
838	conditions in spring would lead to uptake stoichiometry in Redfield proportions), and rather
839	supports the 'growth-rate hypothesis' of Sterner and Elser (2002). Whilst departures from the
840	Redfield ratio in uptake stoichiometry did occur in response to changes in resource (light, nutrients)
841	availability (the second hypothesis), such departures were also associated with different seasonal
842	influences of autotrophs and heterotrophs. Hence, our results highlight the importance of
843	considering the full plankton community in terms of seasonal P-dynamics, and in the underlying
844	mechanisms supporting the CSP.

Acknowledgements

845

- The authors would like to acknowledge the support of the captains, officers and crews of the
- associated Shelf Sea Biogeochemistry cruises, as well as J. Sharples and M. Moore who acted as the
- Principal Scientific Officers for the November and July cruises. This study was supported by the
- 849 UK Natural Environmental Research Council via the Shelf Sea Biogeochemistry research
- programme, through grants NE/K001701/1, NE/K002007/1 and NE/K002058/1. KM was supported
- by a NERC Doctoral Training Partnership (DTP) studentship as part of the Southampton
- Partnership for Innovative Training of Future Investigators Researching the Environment
- 853 (SPITFIRE).

854 **References**

- Arrigo, K.R., 2005. Marine microorganisms and global nutrient cycles. Nature 437, doi:
- 856 10.1038/nature04159.
- Arteaga, L., Pahlow, M., Oschlies, A., 2016. Modeled Chl:C ratio and derived estimates of
- phytoplankton carbon biomass and its contribution to total particulate organic carbon in the
- global surface ocean. Global Biogeochemical Cycles, 30, doi: 10.1002/2016GB005458.
- Bauer, J.E., Cai, W-J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., Regnier, P.A.G., 2013. The
- changing carbon cycle of the coastal ocean. Nature Geoscience 504, 61-70.
- Benitez-Nelson, C.R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-
- 863 Science Reviews 51, 109-135.
- Benitez-Nelson, C.R., Buesseler, K.O., 1999. Variability in inorganic and organic phosphorus
- turnover rates in the coastal ocean. Nature 398, 502-505.
- Björkman, K.M., Thomson-Bulldis, A.L., Karl, D.M., 2000. Phosphorus dynamics in the North
- Pacific subtropical gyre. Marine Ecology Progress Series 22, 185-198.
- Björkman, K.M., Karl, D.M., 2003. Bioavailability of dissolved organic phosphorus in the euphotic
- zone at Station ALOHA, North Pacific Subtropical Gyre. Limnology and Oceanography 48,
- 870 1049-1057.
- Bozec, Y., Thomas, H., Schiettecatte, L-S., Borges, A.V., Elkalay, K., de Baar, H.J.W., 2006.
- Assessment of the processes controlling seasonal variations of dissolved inorganic carbon in the
- North Sea. Limnology and Oceanography 51, 2746-2762.
- Burkhardt, B.G., Watkins-Brandt, K.S., Defforey, D., Paytan, A., White, A.E., 2014.
- 875 Remineralization of phytoplankton-derived organic matter by natural populations of
- heterotrophic bacteria. Marine Chemistry 163, 1-9.

- Davis, C.E., Mahaffey, C., Wolff, G.A., Sharples, J., 2014. A storm in a shelf sea: Variability in
- phosphorus distribution and organic matter stoichiometry. Geophysical Research Letters 41, doi:
- 879 10.1002/2014GL061949.
- Davis, C.E., Blackbird, S., Wolff, G.A., Sharples, J., Woodward, E.M.S., Mahaffey, C. Seasonal
- organic matter dynamics in a temperate shelf sea. Progress in Oceanography, this issue.
- Donald, K.M., Joint, I., Rees, A.P., Woodward, E.M.S., Savidge, G., 2001. Uptake of carbon,
- nitrogen and phosphorus by phytoplankton along the 20°W meridian in the NE Atlantic between
- 57.5°N and 37°N. Deep-Sea Research II 48, 873-897.
- Duhamel, S., Moutin, T., 2009. Carbon and phosphate incorporation rates of microbial assemblages
- in contrasting environments in the Southeast Pacific. Marine Ecology Progress Series 375, 53-
- 887 64.
- Duhamel, S., Björkman, K.M., Karl, D.M., 2012. Light dependence of phosphorus uptake by
- microorganisms in the subtropical North and South Pacific Ocean. Aquatic Microbial Ecology
- 890 67, 225-238.
- Duhamel, S., Björkman, K.M., Doggett, J.K., Karl, D.M., 2014. Microbial response to enhanced
- phosphorus cycling in the North Pacific Subtropical Gyre. Marine Ecology Progress Series 504,
- 893 43-58.
- Byhrman, S.T., Ammerman, J.W., Van Mooy, B.A.S., 2007. Microbes and the marine phosphorus
- 895 cycle. Oceanography 20, 110-116.
- 896 Dyhrman, S.T., Ruttenberg, K.C., 2006. Presence and regulation of alkaline phosphatase activity in
- eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus
- remineralization. Limnology and Oceanography 51, 1381-1390.
- 899 Elser, J.J., Kyle, M., Makino, W., Yoshida, T., Urabe, J., 2003. Ecological stoichiometry in the
- microbial food web: a test of the light: nutrient hypothesis. Aquatic Microbial Ecology 31, 49-
- 901 65.
- Faggerbakke, K.M., Heldal, M., Norland, S., 1996. Content of carbon, nitrogen, oxygen, sulfur and
- phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology 10, 15-27.
- Falkowski, P.G., 2000. Rationalizing elemental ratios in unicellular algae. Journal of Phycology 36,
- 905 3-6.
- 906 Falkowski, P.G., Davis, C.S., 2004. Natural proportions. Nature 431, 131.
- 907 Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V., Raven, J.A., 2010. Phytoplankton in
- a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32, 119-
- 909 137.
- 910 García-Martín, E.E., Daniels, C.J., Davidson, K., Davis, C.E., Mahaffey, C., Mayers, K.M.J.,
- 911 McNeil, S., Poulton, A.J., Purdie, D.A., Tarran, G., Robinson, C. Seasonal changes in

- microplankton respiration and bacterial metabolism in a temperate Shelf Sea. Progress in
- 913 Oceanography, this issue-A.
- 914 García-Martín, E.E., Daniels, C.J., Davidson, K., Lozano, J., Mayers, K.M.J., McNeil, S., Mitchell,
- E., Poulton, A.J., Purdie, D.A., Tarran, G., Whyte, C., Robinson, C. Plankton community
- respiration and bacterial metabolism in a North Atlantic shelf sea during spring bloom
- development (April 2015). Progress in Oceanography, this issue-B.
- Geider, R., 1987. Light and temperature dependence of the carbon to chlorophyll-a ratio in
- microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New
- 920 Phytologist 106, 1-34.
- Geider, R., La Roche, J., 2002. Redfield revisited: variability of C:N:P in marine microalgae and its
- biochemical basis. European Journal of Phycology 37, 1-17.
- 923 Giering, S.L.C., Wells, S.R., Mayers, K.M.J., Schuster, H., Cornwell, L., Fileman, E., Atkinson, A.,
- Cook, K.B., Preece, C., Mayor, D.J. Seasonal variation of zooplankton community structure and
- trophic position in the Celtic Sea: a stable isotope and biovolume spectrum approach. Progress in
- 926 Oceanography, this issue.
- 927 Hessen, D.O., Færøvig, P.J., Andersen, T., 2002. Light, nutrients, and P:C ratios in algae: Grazer
- performance related to food quality and quantity. Ecology 83, 1886-1898.
- Hessen, D.O., Ågren, G.I., Anderson, T.R., Elser, J.T., de Ruiter, P.C., 2004. Carbon sequestration
- in ecosystems: The role of stoichiometry. Ecology 85, 1179-1192.
- 931 Hickman, A.E., Moore, C.M., Sharples, J., Lucas, M.I., Tilstone, G.H., Krivtsov, V., Holligan,
- 932 P.M., 2012. Primary production and nitrate uptake within the seasonal thermocline of a stratified
- shelf sea. Marine Ecology Progress Series 463, 39-57.
- Ho, T-Y., Quigg, A., Finkel, Z.V., Milligan, A.J., Wyman, K., Falkowski, P.G., Morel, F.M.M.,
- 2003. The elemental composition of some marine phytoplankton. Journal of Phycology 39,
- 936 1145-1159.
- Holligan, P.M., Harris, R.P., Newe, R.C., Harbour, D.S., Head, R.N., 1984. Vertical distribution
- and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel.
- 939 Marine Ecology Progress Series 14, 111-127.
- Humphreys, M.P., Achterberg, E.P., Chowdhury, M.Z.H., Griffiths, A.M., Hartman, S.E., Hopkins,
- J.E., Hull, T., Kivimae, C., Smilenova, A., Wihsgott, J., Woodward, E.M.S., Moore, C.M.
- Mechanisms for a nutrient-conserving carbon pump in a seasonally stratified, temperate
- continental shelf sea. Progress in Oceanography, this issue.
- Hydes, D.J., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A., Dickson,
- A.G., Grosso, O., Kerouel, R., van Ooijen, J., Sato, K., Tanhua, T., Woodward, E.M.S., Zhang,
- J.Z., 2010. Determination of dissolved nutrients (N, P, Si) in seawater with high precision and

- inter-comparability using gas-segmented continuous flow analysers. In: The GO-SHIP repeat
- hydrography manual: A collection of expert reports and guidelines. IOCCP report No. 14, ICPO
- publication series No. 134.
- Joint, I., Wollast, R., Chou, L., Batten, S., Elskens, M., Edwards, E., Hirst, A., Burkill, P., Groom,
- 951 S., Gibb, S., Miller, A., Hydes, D., Dehairs, F., Antia, A., Barlow, R., Rees, A., Pomroy, A.,
- Brockmann, U., Cummings, D., Lampitt, R., Loijens, M., Mantoura, F., Miller, P., Raabe, T.,
- Alvarez-Salgado, X., Stelfox, C., Woolfenden, J., 2001. Pelagic production at the Celtic Sea
- shelf break. Deep-Sea Research Part II 48, 14-15.
- 955 Karl, D.M., 2000. Phosphorus, the staff of life. Nature 406, 31-33.
- 856 Karl, D.M., Tien, G., 1992. MAGIC: A sensitive and precise method for measuring dissolved
- phosphorus in aquatic environments. Limnology and Oceanography 37, 103-116.
- 958 Karl, D.M., Björkman, K.M., Dore, J.E., Fujieki, L., Hebel, D.V., Houlihan, T., Letelier, R.M.,
- Tupas, L.M., 2001. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep
- 960 Sea Research II 48, 1529-1566.
- Kovala, P.E., Larrence, J.D., 1966. Computation of phytoplankton number, cell volume, cell surface
- and plasma volume per litre, from microscopic counts. Special Report No. 38, Department of
- Oceanography, University of Washington.
- 964 Krom, M.D., Kress, N., Brenner, S., Gordon, L.I., 1991. Phosphorus limitation of primary
- productivity in the eastern Mediterranean Sea. Limnology and Oceanography 36, 424-432.
- Kühn, W., Pätsch, J., Thomas, H., Borges, A.V., Schiettecatte, L-S., Bozec, Y., Prowe, A.E.F.,
- 2010. Nitrogen and carbon cycling in the North Sea and exchange with the North Atlantic A
- model study, Part II: Carbon budget and fluxes. Continental Shelf Research 30, 1701-1716.
- 969 Leynaert, A., Tréguer, P., Lancelot, C., Rodier, M., 2001. Silicon limitation of biogenic silica
- production in the Equatorial Pacific. Deep-Sea Research I 48, 639-660.
- 971 Lønborg, C., Davidson, K., Álvarez-Salgado, X.A., Miller, A.E.J., 2009. Bioavailability of bacterial
- degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle.
- 973 Marine Chemistry 113, 219-226.
- Lomas, M.W., Burke, A.L., Lomas, D.A., Bell, D.W., Shen, C., Dyhrman, S.T., Ammerman, J.W.,
- 2010. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic
- phosphorus (DOP). Biogeosciences 7, 695-710.
- 977 Lopez, J., Garcia, N.S., Talmy, D., Martiny, A.C., 2016. Diel variability in the elemental
- composition of the marine cyanobacterium *Synechococcus*. Journal of Plankton Research 38,
- 979 1052-1061.
- 980 López-Sandoval, D.C., Fernández, A., Marañón, E., 2011 Dissolved and particulate primary
- production along a longitudinal gradient in the Mediterranean Sea. Biogoesciences 8, 815-825.

- 982 Mayers, K.M.J., Poulton, A.J., Daniels, C.J., Wells, S.R., Woodward, E.M.S., Tyrrell, T., Giering,
- 983 S.L.C. Top-down control of coccolithophore populations during spring in a temperate Shelf Sea
- 984 (Celtic Sea, April 2015). Progress in Oceanography, this issue.
- 985 Moore, C.M., Mills, M.M., Achterberg, E.P., Geider, R.J., LaRoche, J., Lucas, M.I., McDonagh,
- E.L., Pan, X., Poulton, A.J., Rijkenberg, M.J.A., Suggett, D.J., Ussher, S.J., Woodward, E.M.S.,
- 987 2009. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature
- 988 Geoscience 2, 867-871.
- 989 Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Galbraith, E.D.,
- Geider, R.J., Guieu, C., Jaccard, S.L., Jickells, T.D., La Roche, J., Lenton, T.M., Mahowald,
- 991 N.M., Maranon, E., Marinov, I., Moore, J.K., Nakatsuka, Oschlies, A., Saito, M.A., Thingstad,
- 992 T.F., Tsuda, A., Ulloa, O., 2013. Nature Geoscience 6, 701-710, doi: 10.1038/ngeo1765.
- 993 Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate
- in natural waters. Analyticaa Chimica Acta 27, 31-36.
- Pemberton, K., Rees, A.P., Miller, P.I., Raine, R., Joint, I., 2004. The influence of water body
- characteristics on phytoplankton diversity and production in the Celtic Sea. Continental Shelf
- 997 Research 24, 2011-2028.
- 998 Popendorf, K.J., Duhamel, S., 2015. Variable phosphorus uptake rates and allocation across
- microbial groups in the oligotrophic Gulf of Mexico. Environmental Microbiology 17, 3992-
- 1000 4006.
- 1001 Poulton, A.J., Sanders, R., Holligan, P.M., Stinchcombe, M.C., Adey, T.R., Brown, L.,
- 1002 Chamberlain, K., 2006. Phytoplankton mineralization in the tropical and subtropical Atlantic
- Ocean. Global Biogeochemical Cycles 20, GB4002, doi: 10.1029/2006GB002712.
- Poulton, A.J., Stinchcombe, M.C., Achterberg, E.P., Bakker, D.C.E., Dumousseaud, C., Lawson
- H.E., Lee, G.A., Richier, S., Suggett, D.J., Young, J.R., 2014. Coccolithophores on the north-
- west European shelf: calcification rates and environmental controls. Biogeosciences 11, 3919-
- 1007 3940.
- 1008 Rees, A.P., Joint, I., Donald, K.M., 1999. Early spring bloom phytoplankton-nutrient dynamics at
- the Celtic Sea Shelf Edge. Deep-Sea Research I 46, 483-510.
- 1010 Redfield, A.C., Ketchum, B.H., Richards, F.A., 1963. The influence of organisms on the
- composition of seawater. In: The sea (ed. Hill, M.N.), Wiley, 26-77.
- 1012 Reynolds, S., Mahaffey, C., Roussenov, V., Williams, R.G., 2014. Evidence for production and
- lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic.
- 1014 Global Biogeochemical Cycles 28, doi: 10.1002/2013GB004801.
- Richier, S., Achterberg, E.P., Dumousseaud, C., Poulton, A.J., Suggett, D.J., Tyrrell, T., Zubkov,
- M.V., Moore, C.M., 2014. Phytoplankton responses and associated carbon cycling during

- shipboard carbonate chemistry manipulation experiments conducted around Northwest European
- shelf seas. Biogeosciences 11, 4733-4752.
- Scott, J.T., Cotner, J.B., LaPara, T.M., 2012. Variable stoichiometry and homeostatic regulation of
- bacterial biomass elemental composition. Frontiers in Microbiology 3, 1-8.
- Siegal, D.A., Doney, S.C., Yoder, J.A., 2002. The North Atlantic spring phytoplankton bloom and
- Sverdrup's critical depth hypothesis. Science, 296, 730-733, doi: 10.1126/science.1069174.
- Simpson J.H., Sharples, J., 2012. Introduction to the physical and biological oceanography of shelf
- seas. Cambridge, Cambridge University Press. 424 pp.
- Sohm, J.A., Capone, D.G., 2010. Zonal differences in phosphorus pools, turnover and deficiency
- across the tropical North Atlantic Ocean. Global Biogeochemical Cycles 24, GB2008, doi:
- 1027 10.1029/2008GB003414.
- Stener, R.W., Elser, J.J., 2002. Ecological stoichiometry: The biology of elements from molecules
- to the biosphere. Princeton University, 464 pp.
- Talmy, D., Blackford, J., Hardman-Mountford, N.J., Polimene, L., Follows, M.J., Geider, R.J.,
- 2014. Flexible C:N ratio enhances metabolism of large phytoplankton when resource supply is
- intermittent. Biogeosciences 11, 4881-4895.
- Tambi, H., Flaten, G.A.F., Egge, J.K., Bodtker, G., Jacobsen, T.F. Thingstad, 2009. Relationship
- between phosphate affinities and cell size and shape in various bacteria and phytoplankton.
- 1035 Aquatic Microbial Ecology Special Issue 3, 1-10.
- Tarran, G.A., Heywood, J.L., Zubkov, M.V., 2006. Latitudinal changes in the standing stocks of
- nano- and pico-eukaryotic phytoplankton in the Atlantic Ocean. Deep-Sea Research II 53, 1516-
- 1038 1529.
- Thingstad, T.F., Skjoldal E.F., Bohne, R.A., 1993. Phosphorus cycling and algal-bacterial
- competition in Sandsfjord, western Norway. Marine Ecology Progress Series 99, 239-259.
- Thingstad, T.F., Riemann, B., Havskum, H., Garde, K., 1996. Incorporation rates and biomass
- content of C and P in phytoplankton and bacteria in the Bay of Aarhus (Denmark) June 1992.
- Journal of Plankton Research 18, 97-121.
- Thingstad, T.F., Rassoulzadegan, F., 1999. Conceptual models for the biogeochemical role of the
- photic zone microbial food web, with particular reference to the Mediterranean Sea. Progress in
- 1046 Oceanography 44, 271-286.
- Thomson-Bulldis, A., Karl, D.M., 1998. Application of a novel method for phosphorus
- determinations in the oligotrophic North Pacific Ocean. Limnology and Oceanography 43, 1565-
- 1049 1577.
- Toggweiler, J.R., 1993. Carbon overconsumption. Nature 363, 210-211.

1051	Tomas, H., Bozec, Y., Elkalay, K., de Baaer, H.J.W., 2004. Enhanced open ocean storage of CO2
1052	from shelf sea pumping, Science 304, 1005-1008.
1053	Tomas, H., Bozec, Y., de Baar, H.J.W., Elkalay, K., Frankignoulle, M., Schiettecatte, LS.,
1054	Kattner, G., Borges, A.V., 2005. The carbon budget of the North Sea. Biogeosciences 2, 87-96.
1055	Venables, H.J., Moore, C.M., 2010. Phytoplankton and light limitation in the Southern Ocean:
1056	Learning from high-nutrient, high-chlorophyll areas. Journal of Geophysical Research, 115,
1057	C02015, doi: 10.1029/2009JC005361.
1058	Woodward, E.M.S., Rees, A.P., 2001. Nutrient distributions in an anticyclonic eddy in the North
1059	East Atlantic Ocean, with reference to nanomolar ammonium concentrations. Deep-Sea
1060	Research II, 48, 775-794.
1061	Widdicombe, C.E., Eloire, D., Harbour, D., Harris, R.P., Somerfield, P.J., 2010. Long-term
1062	phytoplankton community dynamics in the Western English Channel. Journal of Plankton
1063	Research 32, 643-655.

1065	TABLES
1066	Table 1. Environmental characteristics at two study sites in the Celtic Sea for November (2014),
1067	April (2015) and July (2015). CCS, Central Celtic Sea study site; CS2, Shelf Edge study site;
1068	SML, surface mixed layer depth; SML Temp., average temperature of the SML; Zeup, depth of
1069	the euphotic zone; P_i , inorganic phosphate concentration; NO_x , concentration of nitrate+nitrite;
1070	N*, ratio of nitrate+nitrite to phosphate expressed after Moore et al. (2009); E_0 , incidental
1071	irradiance (PAR) at the sea-surface; \bar{E}_{SML} , average irradiance (PAR) over the SML.
1072	Table 2. Euphotic zone inventories of biomass, production and phosphorus dynamics at two study
1073	sites in the Celtic Sea for November (2014), April (2015) and July (2015). CCS, Central Celtic
1074	Sea study site; CS2, Shelf Edge study site; Chl-a, chlorophyll-a concentrations; C _{phyto} ,
1075	phytoplankton biomass; C _{bact} , bacterial biomass; NPP, Net Primary Production; P _i , inorganic
1076	phosphate concentration; POP, particulate organic phosphate; DOP, dissolved organic
1077	phosphorus; Pi uptake, uptake of inorganic phosphate; DOP prod., production of DOP; PER,
1078	percentage extracellular release of DOP.
1079	Table 3. Turnover times and elemental stoichiometry at two study sites in the Celtic Sea for
1080	November (2014), April (2015) and July (2015). Stoichiometry of carbon fixation (net primary
1081	production, NPP) is expressed against P_i uptake and total P_i uptake (i.e. sum of P_i uptake + DOP
1082	production) on daily timescales. CCS, Central Celtic Sea study site; CS2, Shelf Edge study site;
1083	C _{phyto} , phytoplankton carbon; P _i , inorganic phosphate; POP, particulate organic phosphate; DOP,
1084	dissolved organic phosphorus; tPi, total Pi uptake (sum of Pi-uptake and DOP production).
1085	
1086	SUPPLEMENTARY TABLES
1087	Table S1. Irradiance in incubations.

Table 1. Environmental characteristics at two study sites in the Celtic Sea for November (2014), April (2015) and July (2015). CCS, Central Celtic Sea study site; CS2, Shelf Edge study site; SML, surface mixed layer depth; SML Temp., average temperature of the SML; Zeup, depth of the euphotic zone; P_i , inorganic phosphate concentration; NO_x , concentration of nitrate+nitrite; N^* , ratio of nitrate+nitrite to phosphate expressed after Moore et al. (2009); E_0 , incidental irradiance (PAR) at the sea-surface; \bar{E}_{SML} , average irradiance (PAR) over the SML.

Season /	Site	SML	SML	Zeup	P _i	NO_x	N*	E_0	$ar{E}_{ ext{SML}}$
Date		()	Temp.	()	(1DI-1)	/ 1377-b		(10	4 D -2 1-1
		(m)	(°C)	(m)	(nmol P L ⁻¹)	(µmol N L ⁻¹)		(mol P	$AR m^{-2} d^{-1}$
					November 2014				
10 Nov	CCS	44	13.7	40	180	2.1	-0.8	8.4	1.6
12 Nov	CCS	32	13.6	28	180	2.1	-0.8	11.9	2.3
18 Nov	CS2	58	13.9	65	280	3.5	-1.0	7.7	1.8
20 Nov	CS2	58	14.1	55	220	2.6	-1.0	9.3	1.9
22 Nov	CCS	54	13.1	43	210	1.8	-1.6	8.1	1.4
25 Nov	CCS	52	12.8	50	210	2.5	-0.9	12.1	2.5
Mean		50	13.5	47	213	2.4	-1.0	9.6	1.9
					April 2015				
04 April	CCS	51	10.0	37	491	6.1	-1.8	20.7	3.3
06 April	CCS	47	10.0	37	459	5.7	-1.7	43.2	7.4
10 April	CS2	27	11.3	48	510	8.2	0.1	18.1	6.5
11 April	CCS	22	10.3	32	330	3.8	-1.5	42.3	12.8
15 April	CCS	25	10.6	28	190	1.2	-1.9	20.0	4.8
20 April	CCS	24	10.6	28	190	2.0	-1.0	41.4	10.3
24 April	CS2	24	11.7	30	190	2.3	-0.7	45.4	12.0
25 April	CCS	16	11.1	35	130	0.4	-1.7	42.0	17.5
Mean		30	10.7	34	311	3.7	-1.7	34.1	9.3
					L.L. 2015				
14 July	CCS	28	16.0	53	July 2015 90	< 0.02	-1.4	23.2	8.7
14 July 15 July	CCS	30	16.0	52	90 90	<0.02	-1.4 -1.4	33.2	8.7 11.6
19 July	CS2	11	15.8	20	70	<0.02	-1.4 -1.1	26.1	9.5
20 July	CS2 CS2	12	16.2	20 25	80	0.17	-1.1 -1.1	49.8	9.3 20.1
20 July 24 July	CCS	22	16.2	55	80	<0.02	-1.1	26.2	12.0
24 July 29 July	CCS	35	16.2	33 46	60	<0.02	-1.3 -0.9	41.5	11.5
30 July	CCS	43	16.2	46	55	<0.02	-0.9 -0.9	49.4	11.3
Mean	CCS	26	16.2	42	76	0.02	-1.2	35.6	12.1

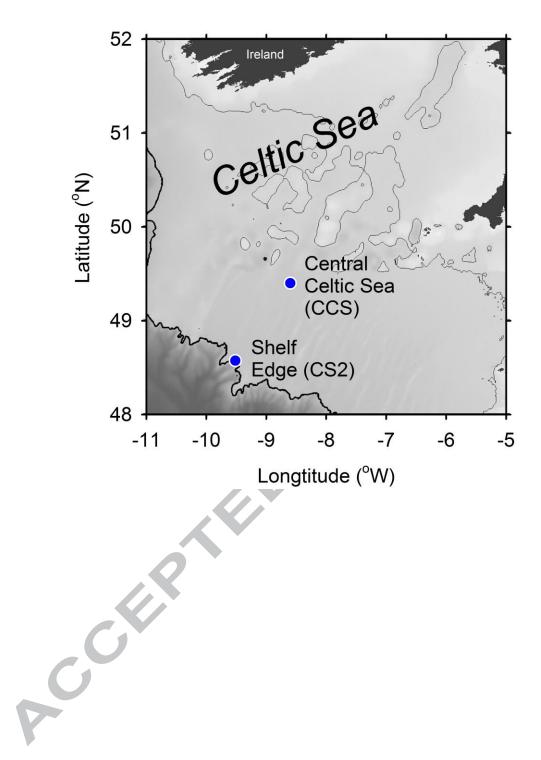
Table 2. Euphotic zone inventories of biomass, production and phosphorus dynamics at two study sites in the Celtic Sea for November (2014), April (2015) and July (2015). CCS, Central Celtic Sea study site; CS2, Shelf Edge study site; Chl-*a*, chlorophyll-*a* concentrations; C_{phyto}, phytoplankton biomass; C_{bact}, bacterial biomass; NPP, Net Primary Production; P_i, inorganic phosphate concentration; POP, particulate organic phosphate; DOP, dissolved organic phosphorus; P_i uptake, uptake of inorganic phosphate; DOP prod., production of DOP; PER, percentage extracellular release of DOP.

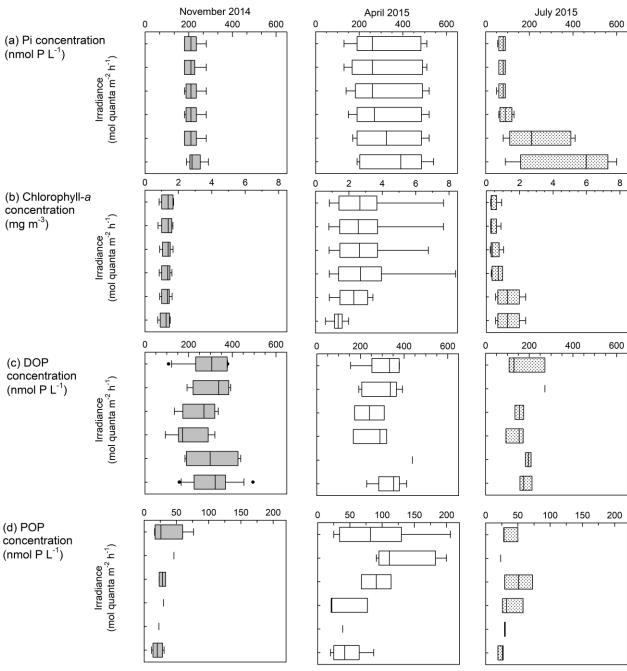
Season Site Chl-a Cphyto Chest NPP Pi POP DOP Pi DOP Pi DOP Pi Uptake prod. (mmol C m² d²) (mmol C m² d²) (mmol P m² d²)													
Date	Season /	Site	Chl-a	C _{phyto}	C _{bact}	NPP	Pi	POP	DOP	P _i		PER	Chl-a normalised
November 2014 November 2014 November 2014 November 2015 November 2016 November 201	Date										prod.		
November 2014 November 2015 November 2014 November 2014 November 2014 November 2015 November 2014 November 2014 November 2014 November 2015 November 2014 November 201			(mg m^{-2})	(mmol	C m ⁻²)	$(\text{mmol C m}^{-2} \text{d}^{-1})$	(mmol P m	ı ⁻²)	(mmol I	$P m^{-2} d^{-1}$	(%)	$(gC (g Chl-a)^{-1} h^{-1})$
10 Nov CCS 59.7 91 28 37.0 7.6 1.7 14 0.24 - - 0.8 12 Nov CCS 37.4 36 - 18.5 5.2 - - 0.14 0.19 58 0.7 18 Nov CS2 54.4 78 24 22.5 18.3 2.0 25 0.30 0.28 48 0.6 20 Nov CS2 57.6 73 24 26.3 12.0 1.4 13 0.24 0.11 31 0.6 22 Nov CCS 68.7 91 32 42.9 9.0 1.0 11 0.25 0.13 34 0.8 25 Nov CCS 70.8 93 32 46.9 10.5 1.1 19 0.25 0.17 41 0.9 Mean 5.1 10.4 1.4 16 0.24 0.17 41 0.7 Mean 2.													
12 Nov							mber 20.						
18 Nov CS2 54.4 78 24 22.5 18.3 2.0 25 0.30 0.28 48 0.6 20 Nov CS2 57.6 73 24 26.3 12.0 1.4 13 0.24 0.11 31 0.6 22 Nov CCS 68.7 91 32 42.9 9.0 1.0 11 0.25 0.13 34 0.8 25 Nov CCS 70.8 93 32 46.9 10.5 1.1 19 0.25 0.17 34 0.9 Mean S8.1 77 28 32.4 10.4 1.4 16 0.24 0.17 41 0.7 April 2015 O4 April CCS 49.6 153 49 117.6 18.3 1.0 12 1.43 0.11 7 2.0 06 April CCS 61.4 162 57 59.1 17.3 - - 1.03 0.12 10 0.8 10 April 205 54.9	10 Nov				28			1.7	14		-	-	
20 Nov	12 Nov	CCS	37.4	36	-	18.5	5.2	-	-				0.7
22 Nov CCS 68.7 91 32 42.9 9.0 1.0 11 0.25 0.13 34 0.8 25 Nov CCS 70.8 93 32 46.9 10.5 1.1 19 0.25 0.17 34 0.9 Mean 58.1 77 28 32.4 10.4 1.4 16 0.24 0.17 41 0.7 Mean	18 Nov		54.4	78			18.3	2.0					0.6
Near Section Section	20 Nov		57.6	73		26.3	12.0	1.4	13	0.24	0.11		0.6
Mean 58.1 77 28 32.4 10.4 1.4 16 0.24 0.17 41 0.7 April 2015 04 April CCS 49.6 153 49 117.6 18.3 1.0 12 1.43 0.11 7 2.0 06 April CCS 61.4 162 57 59.1 117.3 - - 1.03 0.12 10 0.8 10 April CS2 37.8 106 27 87.8 25.1 1.1 13 1.64 0.26 14 2.0 11 April CCS 94.9 221 142 154.0 11.1 3.1 13 1.68 0.36 18 1.4 15 April CCS 152.6 180 162 532.1 6.7 3.1 10 2.08 0.65 24 3.0 24 April CCS 57.4 202 24 132.8 5.7 2.1 6	22 Nov	CCS	68.7	91		42.9	9.0	1.0	11	0.25	0.13	34	0.8
April CCS 49.6 153 49 117.6 18.3 1.0 12 1.43 0.11 7 2.0	25 Nov	CCS	70.8	93	32	46.9	10.5	1.1	19	0.25	0.17	34	0.9
04 April CCS 49.6 153 49 117.6 18.3 1.0 12 1.43 0.11 7 2.0 06 April CCS 61.4 162 57 59.1 17.3 - - 1.03 0.12 10 0.8 10 April CS2 37.8 106 27 87.8 25.1 1.1 13 1.64 0.26 14 2.0 11 April CCS 94.9 221 142 154.0 11.1 3.1 13 1.68 0.36 18 1.4 15 April CCS 152.6 180 162 532.1 6.7 3.1 10 2.08 0.65 24 3.0 20 April CCS 92.3 168 182 206.2 5.3 2.4 9 1.89 0.82 30 1.9 24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11	Mean		58.1	77	28	32.4	10.4	1.4	16	0.24	0.17	41	0.7
04 April CCS 49.6 153 49 117.6 18.3 1.0 12 1.43 0.11 7 2.0 06 April CCS 61.4 162 57 59.1 17.3 - - 1.03 0.12 10 0.8 10 April CS2 37.8 106 27 87.8 25.1 1.1 13 1.64 0.26 14 2.0 11 April CCS 94.9 221 142 154.0 11.1 3.1 13 1.68 0.36 18 1.4 15 April CCS 152.6 180 162 532.1 6.7 3.1 10 2.08 0.65 24 3.0 20 April CCS 92.3 168 182 206.2 5.3 2.4 9 1.89 0.82 30 1.9 24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11									A				
06 April CCS 61.4 162 57 59.1 17.3 - - 1.03 0.12 10 0.8 10 April CS2 37.8 106 27 87.8 25.1 1.1 13 1.64 0.26 14 2.0 11 April CCS 94.9 221 142 154.0 11.1 3.1 13 1.68 0.36 18 1.4 15 April CCS 152.6 180 162 532.1 6.7 3.1 10 2.08 0.65 24 3.0 20 April CCS 92.3 168 182 206.2 5.3 2.4 9 1.89 0.82 30 1.9 24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11 45 2.0 25 April CCS 110.4 247 142 321.0 5.7 3.5 12 1.76 0.48						Ap	ril 2015						
10 April CS2 37.8 106 27 87.8 25.1 1.1 13 1.64 0.26 14 2.0 11 April CCS 94.9 221 142 154.0 11.1 3.1 13 1.68 0.36 18 1.4 15 April CCS 152.6 180 162 532.1 6.7 3.1 10 2.08 0.65 24 3.0 20 April CCS 92.3 168 182 206.2 5.3 2.4 9 1.89 0.82 30 1.9 24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11 45 2.0 25 April CCS 110.4 247 142 321.0 5.7 3.5 12 1.76 0.48 21 2.5 Mean 82.1 180 101 201.3 11.9 2.3 11 1.61 0.49 21 2.0 14 July CCS 19.3 200 30 58.5 6	04 April	CCS	49.6	153	49	117.6	18.3	1.0	12	1.43	0.11	7	2.0
11 April CCS 94.9 221 142 154.0 11.1 3.1 13 1.68 0.36 18 1.4 15 April CCS 152.6 180 162 532.1 6.7 3.1 10 2.08 0.65 24 3.0 20 April CCS 92.3 168 182 206.2 5.3 2.4 9 1.89 0.82 30 1.9 24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11 45 2.0 25 April CCS 110.4 247 142 321.0 5.7 3.5 12 1.76 0.48 21 2.5 Mean 82.1 180 101 201.3 11.9 2.3 11 1.61 0.49 21 2.0 July 2015 14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 <td>06 April</td> <td>CCS</td> <td>61.4</td> <td>162</td> <td>57</td> <td>59.1</td> <td>17.3</td> <td>-</td> <td>-</td> <td>1.03</td> <td>0.12</td> <td>10</td> <td>0.8</td>	06 April	CCS	61.4	162	57	59.1	17.3	-	-	1.03	0.12	10	0.8
15 April CCS 152.6 180 162 532.1 6.7 3.1 10 2.08 0.65 24 3.0 20 April CCS 92.3 168 182 206.2 5.3 2.4 9 1.89 0.82 30 1.9 24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11 45 2.0 25 April CCS 110.4 247 142 321.0 5.7 3.5 12 1.76 0.48 21 2.5 Mean **B2.1 180 101 201.3 11.9 2.3 11 1.61 0.49 21 2.0 **July 2015 14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 23 43.7 6.6 - -	10 April	CS2	37.8	106	27	87.8	25.1	1.1	13	1.64	0.26		2.0
20 April CCS 92.3 168 182 206.2 5.3 2.4 9 1.89 0.82 30 1.9 24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11 45 2.0 25 April CCS 110.4 247 142 321.0 5.7 3.5 12 1.76 0.48 21 2.5 Mean B2.1 180 101 201.3 11.9 2.3 11 1.61 0.49 21 2.0 July 2015 July 2015 14 July 2015 July 2015 July 2015 13 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3	11 April	CCS	94.9	221	142	154.0		3.1	13	1.68	0.36	18	1.4
24 April CS2 57.4 202 44 132.8 5.7 2.1 6 1.33 1.11 45 2.0 25 April CCS 110.4 247 142 321.0 5.7 3.5 12 1.76 0.48 21 2.5 Mean July 2015 July 2015 14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 <	15 April			180	162	532.1		3.1	10	2.08	0.65	24	3.0
25 April CCS 110.4 247 142 321.0 5.7 3.5 12 1.76 0.48 21 2.5 Mean 82.1 180 101 201.3 11.9 2.3 11 1.61 0.48 21 2.5 July 2015 July 2015 14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07	20 April	CCS	92.3	168	182	206.2	5.3	2.4	9	1.89	0.82	30	1.9
Mean 82.1 180 101 201.3 11.9 2.3 11 1.61 0.49 21 2.0 July 2015 14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08	24 April		57.4	202	44	132.8	5.7	2.1	6	1.33	1.11	45	2.0
July 2015 14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0	25 April	CCS	110.4	247	142	321.0	5.7	3.5	12	1.76	0.48	21	2.5
14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0	Mean		82.1	180	101	201.3	11.9	2.3	11	1.61	0.49	21	2.0
14 July CCS 19.3 200 30 58.5 6.3 2.2 7 1.11 0.02 2 2.3 15 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0													
15 July CCS 28.5 121 23 43.7 6.6 - - 1.18 - - 1.2 19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0							ly 2015						
19 July CS2 18.4 66 32 32.5 1.8 1.0 3 0.72 0.04 5 1.3 20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0	14 July							2.2	7		0.02	2	
20 July CS2 17.2 - - 18.3 2.1 - - 0.53 0.03 5 0.8 24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0											-	-	
24 July CCS 35.7 86 33 38.3 12.2 - - 0.96 0.07 7 0.8 29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0	19 July			66	32			1.0	3				
29 July CCS 26.4 79 27 19.7 4.2 1.3 10 0.92 0.08 8 0.6 30 July CCS 28.0 - - 36.8 5.3 - - 0.48 0.06 11 1.0	20 July			-	-		2.1	-	-	0.53	0.03	5	
30 July CCS 28.0 36.8 5.3 0.48 0.06 11 1.0	24 July	CCS	35.7				12.2		-	0.96	0.07	7	0.8
	29 July	CCS	26.4	79	27	19.7	4.2	1.3	10	0.92	0.08	8	0.6
Mean 24.8 110 29 35.4 5.5 1.5 7 0.84 0.05 6 1.1	30 July	CCS	28.0	-	K -	36.8	5.3	-	-	0.48	0.06	11	1.0
	Mean		24.8	110	29	35.4	5.5	1.5	7	0.84	0.05	6	1.1

Table 3. Turnover times and uptake stoichiometry at two study sites in the Celtic Sea for November (2014), April (2015) and July (2015). Stoichiometry of carbon fixation (net primary production, NPP) is expressed against P_i uptake and total P_i uptake (i.e. sum of P_i uptake + DOP production) on daily timescales. CCS, Central Celtic Sea study site; CS2, Shelf Edge study site; C_{phyto}, phytoplankton carbon; P_i, inorganic phosphate; POP, particulate organic phosphate; DOP, dissolved organic phosphorus; tP_i, total P_i uptake (sum of P_i-uptake and DOP production).

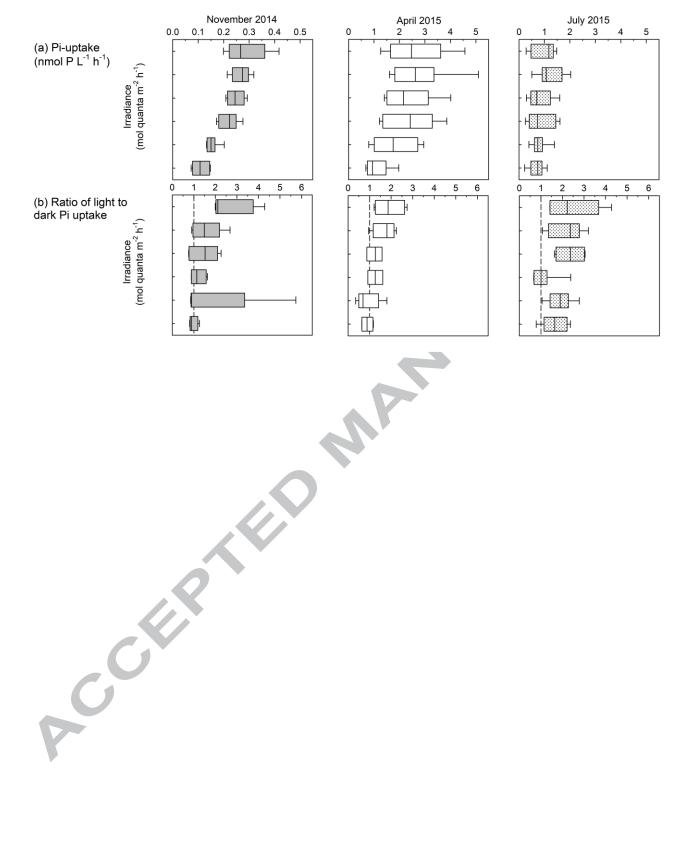
Season / Date	Site	C_{phyto}	P_{i}	POP	DOP	Daily NPP:P _i uptake	Daily NPP:tPi uptake
7 Bute			ſd	-1]			:mol P]
-			L.			[23343-5	
				Novemb	er 2014		
10 Nov	CCS	1.5	21.9	4.9	-	154	
12 Nov	CCS	1.9	25.7	-	-	132	56
18 Nov	CS2	2.2	42.3	4.6	62	75	37
20 Nov	CS2	2.0	34.7	4.0	83	110	75
22 Nov	CCS	1.5	25.0	2.8	59	172	113
25 Nov	CCS	1.4	29.1	3.0	102	188	123
Mean		1.7	29.8	3.9	77	132	81
				April			
04 April	CCS	0.7	8.9	0.5	78	82	76
06 April	CCS	1.7	11.6	-	1-	57	51
10 April	CS2	0.7	10.6	0.5	35	54	46
11 April	CCS	1.0	4.6	1.3	24	92	75
15 April	CCS	0.5	2.2	1.0	11	256	195
20 April	CCS	0.7	1.9	0.9	8	109	76
24 April	CS2	0.7	3.0	1.1	4	100	54
25 April	CCS	0.6	2.2	1.4	17	182	143
Mean		0.8	5.6	0.9	25	116	90
				July 2			
14 July	CCS	1.1	3.9	1.4	239	53	52
15 July	CCS	2.1	3.9	-	-	37	-
19 July	CS2	1.9	1.7	1.0	45	45	43
20 July	CS2	3.1	2.7	-	-	35	33
24 July	CCS	3.1	8.8	-	-	40	37
29 July	CCS	4.4	3.2	1.0	88	21	20
30 July	CCS	2.5	7.7	-	-	77	68
Mean		2.6	4.6	1.1	124	44	42

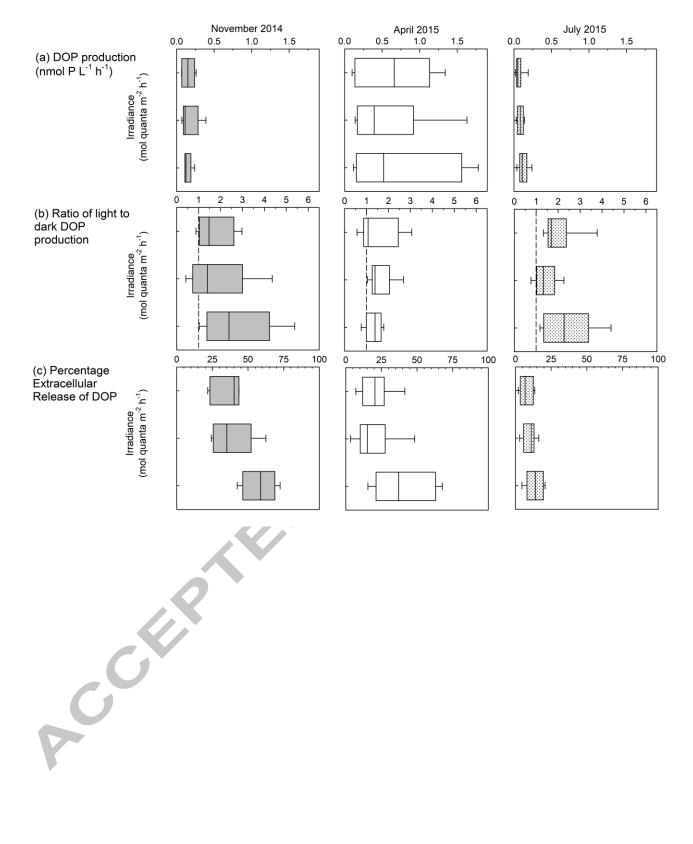
Poulton et al., P-dynamics, PiO Supplementary Table S1


60% 40% 20% 10% 5%	Panels 2	(% transmission)	Irradiance (µmol quanta m ⁻² s ⁻¹)	Photon flux (mol quanta	(mol quanta	(mol quanta
40% 20% 10%			III 5)	$m^{-2}d^{-1}$	$m^{-2} d^{-1}$	$m^{-2}h^{-1}$
40% 20% 10%		November 2015 (photope	$eriod = 9 h$: $E_0 = 6$	8.7 mol auanta i	$m^{-2} d^{-1}$	
40% 20% 10%		2 x 0.15 ND (69%)	167	5.2	5.4	0.60
20% 10%	1	None	147	3.5	4.8	0.53
10%	1	0.30 ND (51%)	70	1.7	2.3	0.25
	1	0.15 ND (69%)	26	0.9	0.8	0.09
	1	0.9 ND (14%)	15	0.4	0.5	0.05
s1%	1	1.2 ND (7%)	7	0.1	0.2	0.03
		April 2015 (photoperiod	$d = 14 h; E_0 = 33.$	9 mol quanta m	$-2 d^{-1}$	
60%	3	None	440	20.3	22.2	1.58
40%	3	1 x 0.15 ND (69%)	260	13.5	13.1	0.94
20%	3	3 x 0.3 ND (51%)	120	6.8	6.0	0.43
10%	1	0.3 ND (51%)	68	3.4	3.4	0.24
5%	2	2 x 0.9 ND (14%)	21	1.7	1.1	0.08
1%	1	1.2 ND (7%)	7	0.3	0.4	0.03
		July 2015 (photoperioa	$l = 16 h; E_0 = 39.$	8 mol quanta m ⁻	$^{2}d^{-1}$	
60%	3	None	440	23.9	25.3	1.58
40%	3	1 x 0.15 ND (69%)	260	15.9	15.0	0.94
20%	3	3 x 0.3 ND (51%)	120	8.0	6.9	0.43
10%	1	0.3 ND (51%)	68	4.0	3.9	0.24
5%	2	2 x 0.9 ND (14%)	21	2.0	1.2	0.08
1%	1	1.2 ND (7%)	7	0.4	0.4	0.03
6						


FIGURES

- **Figure 1.** Location of the sampling stations in the Celtic Sea for this study: CCS, Central Celtic Sea site; CS2, Shelf edge site.
- **Figure. 2.** Box and whisker plots of: (a) phosphate (P_i) concentration (nmol P L⁻¹); (b) chlorophylla (Chl-a) concentration (mg m⁻³); (c) dissolved organic phosphorus (DOP) concentration (nmol P L⁻¹); and (d) particulate organic phosphorus (POP) concentration (nmol P L⁻¹). Plots show median (solid line), as well as the 10th, 25th, 75th and 90th percentiles.
- **Figure 3.** Box and whisker plots of: (a) phosphate (P_i) uptake (nmol P L⁻¹ h⁻¹); and (b) the ratio of light to dark P_i-uptake (L:D). Dashed line on (b) indicates 1:1. Plots show median (solid line), as well as the 10th, 25th, 75th and 90th percentiles.
- **Figure. 4.** Box and whisker plots of: (a) dissolved organic phosphorus (DOP) production (nmol P L⁻¹ h⁻¹); (b) the ratio of light to dark P_i-uptake (L:D); and (c) dissolved organic phosphorus (DOP) production expressed as a percentage of total P_i-uptake (Percentage Extracellular Release, PER). Dashed line on (b) indicates 1:1. Plots show median (solid line), as well as the 10th, 25th, 75th and 90th percentiles.
- **Figure 5.** Time-series measurements of P_i uptake for two temporal experiments: (a) hourly P_i-uptake rates at 4 h time points over 24 h; and (b) cumulative P_i-uptake over 24 h. Dashed vertical lines indicate sunset (21:00 GMT) and sunrise (05:00 GMT). Cumulative P_i-uptake was 17.1 nmol P L⁻¹ d⁻¹ and 22.7 nmol P L⁻¹ d⁻¹, respectively.


SUPPLEMENTARY FIGURES


S1. Size-fractionated Pi-uptake for surface waters at three sites in the Celtic Sea.

