340 research outputs found

    Marine Reptiles

    Get PDF
    Of the more than 12,000 species and subspecies of extant reptiles, about 100 have re-entered the ocean. Among them are seven species of sea turtles and about 80 species and subspecies of sea snakes, as well as a few other species that are occasionally or regularly found in brackish waters, including various other snakes, the saltwater crocodile, and the marine iguana of the Galapagos Islands. The largest group of marine reptiles, the sea snakes, occur in the tropical and subtropical waters of the Indian and Pacific Oceans from the east coast of Africa to the Gulf of Panama. They inhabit shallow waters along coasts, around islands and coral reefs, river mouths and travel into rivers more than 150 km away from the open ocean. A single species has been found more than 1000 km up rivers. Some have also been found in lakes. The taxonomic status of the sea snakes is still under review and no general agreement exists at the moment. The effects of the exploitation on sea snakes have been investigated in the Philippines and Australia but are almost unknown from other areas. Investigations indicate that some populations are already extinct and others are in danger of extinction in various parts of Asia. All sea turtles are endangered except one. The marine iguana of the Galapagos Islands remains vulnerable due to its limited range. Brackish water snakes are closely associated with mangrove forests and as such are subject to deforestation and coastal development schemes that result in habitat loss. In addition, some are collected for their skins. While none of the coastal species are considered in danger of extinction at the present time, many are data deficient

    Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy.

    Get PDF
    Chronic subdural haematoma (CSDH) is an encapsulated collection of blood and fluid on the surface of the brain. Historically considered a result of head trauma, recent evidence suggests there are more complex processes involved. Trauma may be absent or very minor and does not explain the progressive, chronic course of the condition. This review focuses on several key processes involved in CSDH development: angiogenesis, fibrinolysis and inflammation. The characteristic membrane surrounding the CSDH has been identified as a source of fluid exudation and haemorrhage. Angiogenic stimuli lead to the creation of fragile blood vessels within membrane walls, whilst fibrinolytic processes prevent clot formation resulting in continued haemorrhage. An abundance of inflammatory cells and markers have been identified within the membranes and subdural fluid and are likely to contribute to propagating an inflammatory response which stimulates ongoing membrane growth and fluid accumulation. Currently, the mainstay of treatment for CSDH is surgical drainage, which has associated risks of recurrence requiring repeat surgery. Understanding of the underlying pathophysiological processes has been applied to developing potential drug treatments. Ongoing research is needed to identify if these therapies are successful in controlling the inflammatory and angiogenic disease processes leading to control and resolution of CSDH.EE was supported by a Royal College of Surgeons of England Fellowship, funded by the Rosetrees Trust. PJH is supported by a Research Professorship from the National Institute for Health Research (NIHR) and by the NIHR Biomedical Research Centre, Cambridge. KLHC is supported by the NIHR Biomedical Research Centre, Cambridge

    Genome-wide association study identifies two loci strongly affecting transferrin glycosylation

    Get PDF
    Polysaccharide sidechains attached to proteins play important roles in cell-cell and receptor-ligand interactions. Variation in the carbohydrate component has been extensively studied for the iron transport protein transferrin, because serum levels of the transferrin isoforms asialotransferrin + disialotransferrin (carbohydrate-deficient transferrin, CDT) are used as biomarkers of excessive alcohol intake. We conducted a genome-wide association study to assess whether genetic factors affect CDT concentration in serum. CDT was measured in three population-based studies: one in Switzerland (CoLaus study, n = 5181) and two in Australia (n = 1509, n = 775). The first cohort was used as the discovery panel and the latter ones served as replication. Genome-wide single-nucleotide polymorphism (SNP) typing data were used to identify loci with significant associations with CDT as a percentage of total transferrin (CDT%). The top three SNPs in the discovery panel (rs2749097 near PGM1 on chromosome 1, and missense polymorphisms rs1049296, rs1799899 in TF on chromosome 3) were successfully replicated , yielding genome-wide significant combined association with CDT% (P = 1.9 × 10−9, 4 × 10−39, 5.5 × 10−43, respectively) and explain 5.8% of the variation in CDT%. These allelic effects are postulated to be caused by variation in availability of glucose-1-phosphate as a precursor of the glycan (PGM1), and variation in transferrin (TF) structur

    High-Resolution Photoelectron Spectrometry Of Selected Ns\u27 And Nd\u27 Autoionization Resonances In Ar, Kr, And Xe

    Get PDF
    Photoionization cross sections (σ) and photoelectron angular distribution parameters (β) across the (ns’,nd’) autoionization resonances for Ar, Kr, and Xe have been measured with photon resolution widths as low as 0.023 Å by means of synchrotron-based photoelectron spectroscopy. The experimental results are compared with those obtained by other experimental techniques and theoretical results. The enhanced resolution allows a redetermination of the width of the ns’ resonances

    Simulating chemistry efficiently on fault-tolerant quantum computers

    Get PDF
    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf. Comput.}, \textbf{6}:81, 2006]. For a given approximation error ϵ\epsilon, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(logϵ)O(\log \epsilon) or O(loglogϵ)O(\log \log \epsilon); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.Comment: 33 pages, 18 figure

    Trial of Dexamethasone for Chronic Subdural Hematoma

    Get PDF
    BACKGROUND: Chronic subdural hematoma is a common neurologic disorder that is especially prevalent among older people. The effect of dexamethasone on outcomes in patients with chronic subdural hematoma has not been well studied. METHODS: We conducted a multicenter, randomized trial in the United Kingdom that enrolled adult patients with symptomatic chronic subdural hematoma. The patients were assigned in a 1:1 ratio to receive a 2-week tapering course of oral dexamethasone, starting at 8 mg twice daily, or placebo. The decision to surgically evacuate the hematoma was made by the treating clinician. The primary outcome was a score of 0 to 3, representing a favorable outcome, on the modified Rankin scale at 6 months after randomization; scores range from 0 (no symptoms) to 6 (death). RESULTS: From August 2015 through November 2019, a total of 748 patients were included in the trial after randomization - 375 were assigned to the dexamethasone group and 373 to the placebo group. The mean age of the patients was 74 years, and 94% underwent surgery to evacuate their hematomas during the index admission; 60% in both groups had a score of 1 to 3 on the modified Rankin scale at admission. In a modified intention-to-treat analysis that excluded the patients who withdrew consent for participation in the trial or who were lost to follow-up, leaving a total of 680 patients, a favorable outcome was reported in 286 of 341 patients (83.9%) in the dexamethasone group and in 306 of 339 patients (90.3%) in the placebo group (difference, -6.4 percentage points [95% confidence interval, -11.4 to -1.4] in favor of the placebo group; P = 0.01). Among the patients with available data, repeat surgery for recurrence of the hematoma was performed in 6 of 349 patients (1.7%) in the dexamethasone group and in 25 of 350 patients (7.1%) in the placebo group. More adverse events occurred in the dexamethasone group than in the placebo group. CONCLUSIONS: Among adults with symptomatic chronic subdural hematoma, most of whom had undergone surgery to remove their hematomas during the index admission, treatment with dexamethasone resulted in fewer favorable outcomes and more adverse events than placebo at 6 months, but fewer repeat operations were performed in the dexamethasone group. (Funded by the National Institute for Health Research Health Technology Assessment Programme; Dex-CSDH ISRCTN number, ISRCTN80782810.)

    New Oldowan locality Sare-Abururu (ca. 1.7 Ma) provides evidence of diverse hominin behaviors on the Homa Peninsula, Kenya

    Get PDF
    The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3–2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Event-based processing of neutron scattering data at the Spallation Neutron Source

    Get PDF
    The Spallation Neutron Source at Oak Ridge National Laboratory, USA, ushered in a new era of neutron scattering experiments through the use of event-based data. Tagging each neutron event allows pump–probe experiments, measurements with a parameter asynchronous to the source, measurements with continuously varying parameters and novel ways of testing instrument components. This contribution will focus on a few examples. A pulsed magnet has been used to study diffraction under extreme fields. Continuous ramping of temperature is becoming standard on the POWGEN diffractometer. Battery degradation and phase transformations under heat and stress are often studied on the VULCAN diffractometer. Supercooled Al2O3 was studied on NOMAD. A study of a metallic glass through its glass transition was performed on the ARCS spectrometer, and the effect of source variation on chopper stability was studied for the SEQUOIA spectrometer. Besides a summary of these examples, an overview is provided of the hardware and software advances to enable these and many other event-based measurements
    corecore