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High-resolution photoelectron spectrometry of selected ns '

and nd' autoionization resonances in Ar, Kr, and Xe

Jian Z. Wu, Scott B. Whitfield, and C. Denise Caldwell
University of Central Florida, Orlando, Florida 328I6

Manfred O. Krause and Peter van der Meulen*
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

Anders Fahlman
Linkoping Institute of Technology, S-58183, Li nkoping, Sweden

(Received 22 January 1990)

Photoionization cross sections (cr} and photoelectron angular distribution parameters (P} across
the (ns', nd') autoionization resonances for Ar, Kr, and Xe have been measured with photon resolu-

0
tion widths as low as 0.023 A by means of synchrotron-based photoelectron spectroscopy. The ex-
perimental results are compared with those obtained by other experimental techniques and theoreti-
cal results. The enhanced resolution allows a redetermination of the width of the ns' resonances.

I. INTRODUCTION

The study of autoionizing resonances of the rare gases
in the vacuum ultraviolet region was initiated by Beutler'
and first theoretically analyzed by Fano. Since then,
new and more sophisticated experimental and theoret-
ical ' techniques have been developed for studying the
dynamics of the ionization process. Electron spec-
trometry in combination with synchrotron radiation has
proven a powerful vehicle to probe many-electron effects
in bound and in continuum states, interactions between
continuum and bound states, and relativistic effects. Re-
cent theoretical treatments of autoionizing resonances
based on multichannel quantum-defect theory
(MQDT) in conjunction with the relativistic random-
phase approximation (RRPA) have yielded all the au-
toionization parameters for the rare gases. ' The experi-
mental measurements of key photoionization parameters
in the vicinity of these resonances provide sensitive tests
for the development of MQDT.

The ionization of an outer p electron from one of the
rare gases yields ions in the ground state, P3/2 and the
excited state, P, /2. Rydberg series have been observed
converging on the ground state P3/2 and on the excited
state P»2. Higher members of the series converging
upon P, /2 lie in the continuum above the P3/2 ioniza-
tion threshold and are therefore subject to autoionization.
The autoionization spectrum consists of two series which
arise from transitions from the 'So ground state to excit-
ed levels designated as ( P, & )n2osr ('P, &, )nd', i.e., the
excitation of an outer p electron to ns or nd states (in J-j
notation).

Since Beutler's original work, energies and absolute
photoionization cross sections of the ns' and nd' reso-
nances for Ar, Kr, and Xe have been determined experi-
mentally by a number of workers' either by photoab-
sorption or by photoionization. The first measurement of

the variation of the angular distribution parameter /3 of
the Beutler-Fano autoionizing resonances in Xe was
made by Samson and Gardner. Later, studies of P were
made for Kr and Xe by Morioka et al. , and for Xe by
Carlson et al. Heinzmann et al. extended the study of
the resonances to the measurement of the spin polariza-
tion parameters for photoelectrons of Xe in this same
photon energy region. Resolutions in these experiments
ranged from 0.4 A for Morioka et al. to 1.2 A for Carl-
son et al. Thus far, no /3 measurements have been made

0
at a resolution which approaches the 0.07-A resolution
used for the cross-section determinations. However,
concurrently to the present study, a high-resolution mea-
surement of P over the narrow range of the 8s' resonance
of Xe was carried out by Tonkyn and White in a laser
excitation experiment. For Ar no experiment exists of
the variation of the photoelectron angular distribution
with energy across the autoionization resonance to corn-
plement the cross-section measurement, which was per-

0

formed at a resolution of 0.02 A. '

In the present paper we report the high-resolution
measurements of /3 and o across selected autoionizing
resonances for Ar, Kr, and Xe. We focus attention on
the 6d' and the Ss' levels for Kr and Xe; the 10d' and the
12s' levels for Ar. The resolution we achieved marks the
first time that synchrotron-based photoelectron spec-
trometry measurements have been possible at resolutions
comparable to that used in the less demanding photoion
and photoabsorption techniques. The enhanced resolu-
tion also allows a redetermination of the widths of the ns'
resonances. While the early experimental /3 values of
Samson and Gardner have been compared with theoret-
ical MQDT values by Dill and by Geiger, ' our experi-
mental values of /3 and cr for Ar, Kr, and Xe are com-
pared with recent MQDT calculations by Johnson
et al. ' and available high-resolution measurements by
others 4151628
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II. EXPERIMENT

The photoelectron spectrometry studies were carried
out at the 4-m Normal Incidence Monochromator (NIM)
at the University of Wisconsin Synchrotron Radiation
Center. The apparatus we use for all measurements has
been described in detail elsewhere. ' ' It will suffice to
give a limited description of those features appropriate to
our experiments. Radiation from the 4-m NIM falls onto
a source of Ar, Kr, or Xe. Electrons ejected from the
atoms are energy analyzed in an electrostatic analyzer
having 1% energy resolution and monitored with a chan-
neltron detector. Three analyzers mounted on a platform
that can be rotated in a plane perpendicular to the direc-
tion of incidence of incoming radiation allow ready deter-
mination of both p and cr

In the dipole approximation the angular distribution of
intensity of photoelectrons is given by

I(8) ~ = 1+—[1+3p cos(28)]
der o P
dO, 4~ 4

where p is the photon polarization and 0 is the angle rela-
tive to the major electric vector of the polarized photon
beam. p is the electron angular distribution parameter,
and o is the photoelectron cross section. The di6'erential
cross section do /dQ is proportional to the observed in-
tensity, I(8), and by measuring I(8) at 8=0' (or 180')
and 8=90', the p parameter is obtained from

4(R —1)
3p (R + 1)—(R —1)

(2)

where R =I(0')/I(90') or I(180')/I(90').
Since the intensity measurements were taken simul-

taneously with two analyzers set at right angles, any
effects on p from ffuctuations and drifts in source gas
pressure and photon flux could be eliminated. For a
given p, cross-section measurements are taken at the so-
called magic angle 8 =

—,'cos '[1/(3p)], at which the p-
dependent term should make no contribution to the in-
tensity. We also calculated o. from the data obtained
simultaneously at 0=0' and 0=90' as a supplement to
the direct determination at 0 . Possible deviations of the
electron source from a homogeneous cylinder with regard
to the viewing angle were checked by recording photo-
electrons having an isotropic angular distribution. We
use for this purpose the Ar 3p photoelectron at h v=16.5
eV, for which p=0.00+0.06. The required corrections
amounted to about 10% in the ratio R. The relative
response of the analyzers was determined by measuring
the signal strengths for each analyzer at the same angle 0,
e.g. , 0=45'

~

The polarization of the photon beam was obtained
from a measurement of the angular distributions [Eq. (2)]
of Ar 3p, Kr 4p, and Xe 5p at 21.22 eV, for which P
values are known to an accuracy better than +0.04. We
found a value of p =0.77(3). Tests at lower photon ener-
gies proved the polarization to have the same value
within the error limit.

Two di6'erent modes were employed for data record-
ing: the constant ionic state (CIS) mode, in which spectra

are recorded by scanning simultaneous1y the photon en-
ergy and accelerating voltage of the source cell so as to
always observe electrons corresponding to the same final
ionic state; and the photoelectron spectroscopy (PES)
mode, in which spectra are taken at constant photon en-
ergy by scanning the photoelectron energy. CIS spectra
are normalized with the aid of PES spectra. Signals were
stored in a multichannel scalar which could be multi-
plexed. The step width for the CIS scan was typically 0.2
meV.

The resolution for a CIS scan depends solely on the
bandpass of the monochromator. Our intensity levels
were such that we could typically work with slit settings
as narrow as 25 pm. For the 3600-line/mm Au grating
used, this led to a bandpass of 0.023(1) A. However, such
a narrow bandpass was only necessary for the measure-
ments on Ar. The widths of the lines are such that we
could work with slit openings of 30 pm for Kr and Xe,
and even 75 pm for Xe without loss of information. The
corresponding bandpass for these widths was 0.026(2) and
0.05(1) A, respectively, as determined by measurements
on the Xe ns' series, n =8—14, and on the Ne (13d', 14s')
and ( 14d ', 15s '

) resonances.
The gas pressure in the source volume was approxi-

mately 2 X 10 Torr. With a pressure of less than
3 X 10 Torr in the analyzer region, scattering processes
of the electrons at 30 & Ek;„&800 meV in the source and

Ek,„=5eV upon entering the analyzers could be neglect-
ed. All data were corrected for variations in photon flux,
analyzer response, background counts, and asymmetry of
the source volume. In the case of CIS spectra, photoelec-
tron spectra were taken at suitable photon energies near
the beginning and the end of the CIS scan to provide the
needed information for the corrections. In addition, the
signal from a Ni mesh located at the exit mirror of the
NIM served for normalization.

III. EXPERIMENTAL RESULTS
AND DISCUSSION

A. Xenon:
5p ('So)~5p'('P&&2)ns' and 5p ('So)~5p'('P, /, )nd'

The experimental results for p and o as a function of
photon energy are shown in Fig. 1 ~ The solid lines are
CIS spectra; the points with errors bars represent the
values of PES measurements used for normalization. Be-
cause of the repetition of o and p along the Rydberg
series, we shall focus on the first autoionizing resonance
between the P, /z and P, &2 ionization thresholds, i.e.,
the n =8 line in the s' series and the n =6 line in the d'
series. In Fig. 1 the variation of p is compared with the
variation of o in passing through the autoionizing reso-
nances (6d', gs'). One notes the characteristic pattern in
o'. a narrow "s" structure superimposed on a broad "d"
structure and a large peak-to-peak ratio of the s to d reso-
nance, as reported earlier in a number of papers. ' The
energy scale of o. in Fig. 1 is normalized at the 8s' peak
to 12.5753 eV, according to Moore's tables. ' The o.

spectrum was converted to an absolute cross section by
normalization to the theoretical calculation by Johnson
et al. ' at 12.650 eV.
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In I'ig. 2 results of theoretical calculations for both 0.

and p by Johnson et al. ' and earlier experimental data
for 0. obtained in photoion measurements by Eland and
for p in photoelectron measurements by Samson and
Gardner are reproduced for comparison with our ex-
perimental results. All curves are adjusted to have equal
energy at the 8s' resonance. The o data of Eland are
also normalized at 12.650 eV to the theoretical result of
Johnson et al. ' In the determination of o. the results of
the ion measurement and the photoelectron measurement
essentially overlap except at the maximum of the 8s' res-
onance. Determination of cross sections in regions
through which p is rapidly varying requires that the pos-
sible influence of p is removed by a careful alignment of
the electron detector at the "magic angle" 8 . In our
case, p =0.77 and 8 =57.8'. However, this number can
vary by as much as 3' within the 0.03 error limit of the
measurement of p. The orientation of the electric field
vector is determined at the same time as the asymmetry
in the source volume and is known to within +5'. Taking

both sources of error into account, we estimate that the
setting of the electron analyzer at the magic angle could
have a maximum uncertainty of 8'. As p is so large at the
Ss' resonance, this could give rise to an error on the order
of 12% in the maximum of the Ss' resonance. Within
this limit, the ion result and the photoelectron result for
the peak value are in accord.

The p spectrum across the 8s' resonance varies from
p= 1.0 to p= —0.3. This is a sharper variation than ob-
served previously in the experiments done at lower reso-
lution. ' ' Our results, which have an accuracy of
+0.07 in p show that the minimum in p for the Ss' reso-
nance is a much sharper spectral feature than was pre-
dicted by theoretical calculations of Dill and Johnson
et al. ' In particular, the p value around the 8s' reso-
nance has a more pronounced dip (p= —0.3) in the ex-
periment than in the calculation (p=0). ' The sharper
dip in p is accompanied by a narrower observed width of
the 8s' peak than predicted by theory. Also, near the
maximum of the 6d' resonance there is a discrepancy in
both p and 0 between theory and experiment, with the
experiment displaying a sharper onset.

500-
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FIG. 1. The cross section 0. (a) and angular distribution pa-
rameter P (b) of xenon photoelectrons across the (6d', 8s') au-
toionization resonances. The solid lines are the CIS data; PES
results are indicated by points with error bars. The energy scale
is fixed at E(8s')=12.5753 eV. The o. curve is normalized at
12.650 eV to 61.1 Mb according to Ref. 13. The CIS spectrum

0
for cr was taken with 0.5 meV/step at a resolution of 0.026 A
[AE =0.33+0.03) meV]; the CIS spectrum for p was taken with
0.2 meV/step at a resolution of 0.05 A [EE=(0.69+0.03)
meV]. Each spectrum contains 801 points.

—05-

—1.0
1 2.35

d
I

12.45
I I

12.55 12.65
Photon Energy (eV)

1 2.75 1 2.85

FIG. 2. Angular distribution parameter P and cross section cr

for Xe across the (6d', 8s') autoionization resonances. Solid cir-
cles are this work; open triangles are experimental data by Sam-
son and Gardner (Ref. 25); open diamonds are experimental
data by Eland (Ref. 5); solid lines (both panels) are the theoreti-
cal MQDT-RRPA results of Johnson et al. (Ref. 13). All
curves are set equal in energy at the 8s' resonance, and the cross
sections are normalized to the theoretical results at 12.650 eV.
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FIG. 3. Angular distribution parameter P for Xe across the
8s resonance. Solid circles are this work, obtained with a reso-
lution of 0.026 A [EE=(0.33+0.03) meV]. Open squares are
the experimental data of Tonkyn and White (Ref. 28), obtained

0
with a resolution of 0.02 A (DE =0.26 meV) using laser excita-
tion.

The recent experiment by Tonkyn and White using
laser excitation reveals the same sharp structure of P near
the 8s' resonance. As can be seen in Fig. 3, our values of
P for the Ss' resonance overlap exactly with those ob-
tained by Tonkyn and White. This accord, which applies
also to the absolute values of P, is remarkable and gratify-
ing in view of the different techniques applied in the two
experiments. Since the natural width of the resonance is
evidently much larger than the instrumental resolution of
0.33 meV in our experiment and 0.26 meV in the laser ex-
periment, the observed width is essentially the same in
both experiments. To an excellent approximation, we are
scanning the Xe (6d', 8s') resonances —and, as seen in
the following, also the Kr (6d', 8s') resonances —with
negligible instrumental broadening.

400

300-
88'

I

200-
6d'

I

100-

(o)

and the theoretical predictions by Johnson et al. ' Also,
the o. data of the earlier ion current measurement, nor-
malized at 14.155 eV to the value of Johnson et al. ,

' are
reproduced in the figure. All curves are set equal in ener-

gy at the 8s' resonance for the purpose of comparison.
As was the case with Xe, both experimental results agree
quite well except at the maximum of the 8s' resonance.
Even though there is a possible 12% error associated
with the photoelectron measurements due to the
infiuence of P on intensity at the magic angle, the value of
the peak is still less than that from the photoion measure-
ment. Our experimental results are an average of three
independent determinations, one from o at the magic an-
gle and the other two from the results of intensity mea-
surements at 0' and 90' for P. These agree to within 13%
of each other. As the experimental widths of both the
photoion results and the photoelectron results are compa-
rable, the difference cannot be explained on the basis of
resolution. In addition, the natural width of this line is
1.43 meV, so any resolution better than 0.05 A should
not influence the observed width. With all sources of er-
ror taken into account, our result remains 20% lower
than the photoion measurement at the maximum of the
8s' peak, and the origin of this discrepancy is unclear.

The general agreement in the structure and in the be-
havior of I3 and cr between theory and experiment is

B. Krypton:
4p ('So)~4p'('P&&&)ns' and 4p ('So)~4p'('P&&& )nd'

In Fig. 4 we show o and P results obtained in the re-
gion of the (6d', 8s') resonances for Kr. The upper panel
gives the autoionization cross sections; the lower panel
gives the corresponding P values. The cr curve is convert-
ed to an absolute cross section by normalization to the
theoretical value' of o. =37. 1 Mb at 14.155 eV.

The P curve we report here is the first measurement of
P for this resonance structure in krypton. As was the
case for Xe, there is a deep dip in the vicinity of the 8s
feature, with P= —0.64 at 14.101 eV. The variation in P
(0.51 to —0.61) across the resonance is bP=1. 15. The
entire P curve is shifted downward, on the average by 0.4,
compared with the P curve of Xe. In addition, the Ss'
and the maximum of the 6d' level are more closely
spaced for Kr than for Xe. The uncertainty in the f3
values is about 0.07.

Figure 5 shows the comparison between our rneasure-
ments of P and cr for Kr near the (6d', 8s') resonances

1.5

1.0-

o 0.5-
I
E
P 0.0-
O
CL

88'

I

6d'

—1.0-

—1.5
1 4.00 1 4.05 1 4.10 14.1 5 1 4.20 14.25 1 4.30

Photon Energy (eV)

FIG. 4. Cross section o (a) and angular distribution parame-
ter P (b) of Kr photoelectrons in the region of the (6d', Ss') reso-
nances. Solid lines are the CIS spectra, obtained at AA, =0.026
A, hE =(0.40+0.03) meV, with a mesh size of 0.2 meV. The
points with error bars are the PES results.



1354 JIAN Z. WU et al. 42

400

300-

200-

100-
(a)

0.6-

Q

0.0-
E
O
D
CL

oyer
0 I

lt
I',
I

, 51'
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I I I

where the width of the 8s' resonance was dominated by
the natural width. By fitting the experimental data to a
Fano profile, including the effect of the bandpass, we esti-
mate the natural width of the Ar 12s' resonance to be
0.2412) meV.

The resonance features observed in Ar retain the typi-
cal structure which appears in Kr and Xe. However,
from Fig. 6, we see that the 12s' peak and the maximum
of the 10d' resonance lie closer in energy for Ar than for
Kr and Xe. The two peaks in Ar are barely resolved even
at a resolution of 0.02 A. ' Through the Ar resonances
the P parameter continues its trend toward lower values
when going from Xe to Kr to Ar. However, for Ar the
theoretical P shows a much larger variation than the ex-
perimental values in the region of the 12s' resonance.
This is primarily, if not entirely, an effect of the limited
resolution of the experiment. In analogy with Kr and
Xe, we expect the theoretical prediction to be a quite
good representation of the P variation around the 12s'
feature. However, the depth of the broad minimum
occurring on the low-energy side of the 10d' resonance is
overestimated by theory. For this feature the experiment
is not resolution limited.

1 0 2
14.00 14.05 14.10 14.15 14.20 14.25 14.30

Photon Energy (eV)

FIG. 5. Angular distribution parameter P and photoioniza-
tion cross section o. for Kr across the (6d', 8s') resonances.
Solid circles (both panels) are this work. (Only every 40th point
is shown. ) Open diamonds (upper panel) are taken from Ber-
kowitz (Ref. 5); solid lines (both panels) are MQDT-RRPA cal-
culations by Johnson et al. (Ref. 13). All curves are set equal in

energy at the 8s' resonance. The experimental cross-section re-
sults are normalized to the theoretical value at 14.155 eV.

150

100-

50-

12$'

I

good. We notice, however, discrepancies, albeit smaller
ones, of the same type as those for Xe. The observed
width of the 8s' resonance is slightly narrower than the
calculated width, and the 6d' resonance is somewhat wid-

er, with a sharper onset than predicted by theory.

0.5-
10d'

I

12$'

I

C. Argon:

3p ('So)~3p ( P&zz)12s' and 3p ('So)~3p ( P&zz)10d'

The results of o and P measurements for the
(10d', 12s') resonances in Ar are shown in Fig. 6. We
selected the second pair of (nd', ns') series above the
P3/p threshold instead of the first, as in Kr and Xe, in

order to avoid the region of very low electron kinetic en-
ergy. An auxiliary measurement of 0. by us using an ion
detector is in excellent agreement with the photoelectron
recording. Comparison of the data with theoretical cal-
culations by Johnson et al. ' and with earlier photoion
measurements reported by Radler and Berkowitz' is
made in Fig. 7. As seen in the figure, there is good agree-
ment between the two sets of experimental data. Both
show clearly that the experimental width observed for the
12s' resonance is determined by the photon bandpass.
This is in contrast to the observation in Kr and Xe,

4) 0.0-
0
La
CL

—0.5-

(b)
—1.0

15.78
I

15.79
I

15.80 15.81

Photon Energy (eV)

1 5.82 15.83

FIG. 6. Cross section o. (a) and angular distribution parame-
ter P (b) of Ar photoelectrons across the (10d', 12s') autoioniza-
tion resonances. Solid lines are the CIS data, obtained at a reso-
lution of AA, =0.023 A, corresponding to AE=(0.46+0.02)
meV, with a mesh size of 0.1 meV. The points with error bars
are the PES results. The cr curve is normalized to 27.5 Mb at
15.806 eV, according to Ref. 13.
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150

100-

50-

0.8-

0.4-
Q
Q 0.0-
0
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CL —04-

—0.8-

0
I

'I

'1

0 (ro) =f o (ro x)L (x—)dx . (6)

The integral (6) can be evaluated by using contour in-

tegration, which leads to

To obtain the natural linewidth I, one must deconvo-
lute the experimental line shape with a function that is
representative of the influence of the width of the exciting
radiation and the level of origin of the electron. In our
case, this function is well represented by the Lorentzian
distribution

(B /21T)

x +(B/2)
where B is the full width at half maximum (FWHM)
width (bandpass) for this function. In our case there is no
contribution from the level of origin of the electron, as
we excite from the ground state. The experimental
broadening is determined solely by the bandpass of the
monochromator, which is equal to 0.023 A in the case of
Ar and 0.026 A for Kr and Xe. The observed spectrum
O(ru) is the convolution of the true spectrum [Eq. (3)]
and the function (5):

1.2
15.78

I

15.79
I I

1 5.80 1 5.81

Photon Energy (ev)

I

1 5.82 1 5.83 O(ru)=cr,'
2

+crb, (e'+q)
(7)

FIG. 7. Cross section o and angular distribution parameter P
for Ar across the (10d', 12s') autoionization resonances. Solid
circles (both panels) are this work; open diamonds (a) are pho-
toion results reported by Radler and Berkowitz (Ref. 17). Solid
lines (both panels) are the MQDT-RRPA results of Johnson
et al. (Ref. 13). All curves are set equal in energy at the 12s'
resonance, and both experimental o curves are normalized to
the theoretical value at 15.806 eV.

IV. FANO PARAMETRIZATION
OF AUTOIONIZATION RESONANCES

TABLE I. Line-shape parameters obtained through the
fitting procedure from the photoionization cross sections of Ar,
Kr, and Xe across selected (nd', ns') resonances measured in
this work. In the table, co& is the resonance energy (eV), I is
the resonance width (meV), q is the profile index, o., is a portion
of the cross section describing the transition to states in the con-
tinuum that interact with the discrete autoionizing state, and o.

b

is the nonresonant portion of the cross section. o., and o.
b are

in units of Mb. The absolute energy scale is derived by setting
the value of the energy at the 8s' peak for Kr and Xe and the
12s' peak for Ar to the Moore result (Ref. 21).

(@+q)o. =o. +o.a 1+ 2 b

Here

(3)

The profile of an isolated autoionizing resonance can
be described through the parametric form developed by
Fano:

Ar

o'q
r

CTb

12s'

15.7974(4)
0.24(2)
8.29(3)
6.03(3)

8s'

14.29(1)

10d'

15.7941(6)
4.08(1)
1.44(8)

50.00(5)

6d'

e=(co—ru„)/(I /2) (4) Kr

describes the departure of the incident photon energy co

from the resonance energy co& scaled by I /2, where I is
the resonance width. The quantity q is called- the profile
index. The quantities cr, and o-b represent values for two
portions of the cross section describing transitions to
states in the continuum that do and do not interact with
the discrete autoionizing state, respectively. By least-
squares fitting Eqs. (3) and (4) to the experimental data,
these five parameters, o.„o.b, cuz, I, and q, can be deter-
mined. Alternative parametrizations and fitting pro-
cedures have been discussed by Shore and Ueda.

Xe

oa
I

O'b

oa
I

Ob

14.0984(4)
1.43(3)

82.56(4)
0.0356(5)

8s'

12.5750(4)
2.33(3)

12.35(4)
1.91(3)

11.13(1)

2.03(1)

14.0692(6)
25.54(5)

1.99(4)
23.94(5)

6d'

12.4269(6)
80.78(8)

1.41(8)
34.97(7)
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125

100- ', 12s') &a 1+(B/I )
(10)

75

50

and

'b= b+(B/I )

25-

400

300-

200-
b

100

0
14.05

15.79 1 5.80

I

14.10

1 5.81 15.82

14.15 14.20

Kr (6d', 8s')

(e,'+q, ) (ez+qz )
O(a))=cT,',

2
+cT,'g z +~b1+,' 1+e„

(12)

Equation (7) has the same parametric form as the origi-
nal Fano expression. There are six parameters, o.„o.b,
co+, I, q, and B, to be employed in fitting Eqs. (7)—(11) to
a single line of the Ar, Kr, or Xe spectrum. However, in
the absence of the s -d interactions, which we assume heu-
ristically to be the case here, it is possible to fit the two
lines to a superposition of two functions of the form (7):

500-
400-
300-
200-

100

0
12.40

(1
I I
I

i
(

II
II

ll

12.50 12.60
Photon Energy (eV)

Xe (6d', 8s')

12.70

where

e'= (s)—co„)/(I"/2),
I"=I +B,

FIG. 8. Photoionization cross section cr across selected
(nd', ns') resonances for Ar, Kr, and Xe. Solid circles are this
experiment; solid lines are fitted curves using Eqs. (12) and (13),
together with Eqs. (8)-(11). Parameters of the best fits for these
resonances are listed in Table I. For the sake of clarity, only
every 40th point is shown outside the s' resonances.

where

e,'=(co —co+;)/(I,'/2) for i =s and d . (13)

The detailed description of the fitting of two or more
lines was given by Ueda.

The parameters from the best fits to the data are given
in Table I; comparisons of the fitted curves and the exper-
imental results are given in Fig. 8. The errors associated
with I „are determined largely from the uncertainty in
the bandpass. Other errors are those derived from the
accuracy of the fit.

In order to better establish the widths of the lines,
higher levels of the ns' Rydberg series for Kr and Xe
were also measured in this experiment. Fano parameters
from a best fit of these lines are given in Table II. In the
fourth column of this table are given the widths for Kr
and Xe calculated according to the relationship
I, cc 1/(n —5), where 5 is taken from the resonance en-

ergies quoted in the second column. For Kr, 5=3.1014
and for Xe, 5=4.0053. As can be seen, the agreement
between the two determinations is excellent.

TABLE II. Widths of the ns' resonances of Ar, Kr, and Xe. I „ is obtained through fitting via the
Fano parametrization, Eqs. (7)-(11). I, is calculated from I, cc I /(n —5)', where 5 is obtained from
the resonance energies given in the second column. I, is taken from Ref. 16. The resonance energies,
c00, are calculated from the Moore table (Ref. 21) [with coo(eV) =coo(cm ')(12 398.52)10 '].

Features
ns'

Ar 12

Resonance energy (eV)
COp

15.7974 0.24(2)

Autoionization width (meV)
I,

0.298

Kr 8
9

10
12

14.0985
14.2742
14.3774
14.4944

1.43(3)
0.86(3)
0.46(3)
0.24(3)

1.43
0.82
0.51
0.24

1.42
0.929

Xe 8
9

10
12
14

12.5753
12.8888
13.0576
13.2240
13.3009

2.33(3)
1.05(3)
0.60(3)
0.33(3)
0.18(3)

2.24
1.14
0.66
0.28
0.14

1.83
1.09
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V. CONCLUSION

Working for the first time in a photoelectron spec-
trometry experiment at a resolution comparable to pho-
toabsorption and photoion techniques, we have complet-
ed a study of selected ns' and nd' resonance features in

Ar, Kr, and Xe. For the first time, both the cross section
cr and the angular distribution parameter P were mea-
sured for these gases, allowing us to reevaluate the most
advanced theoretical model, the RRPA MQDT, in a
rather comprehensive way. We find general good accord
in all cases. However, we note a number of small, but
significant discrepancies. In particular, the width of the
8s autoinization resonances of Kr and, especially, Xe is
overestimated by theory. It appears that the strengths of
interaction of the strongly interacting channels con-
sidered in the calculation should be reexamined.

The cross sections are parametrized with the aid of the
Fano resonance line-shape formula. The data reveal the

structure of cr and f3 in the vicinity of the first ns' and nd'
resonances of Kr and Xe without instrumental broaden-
ing. The same applies to the 10d' resonance of Ar, but
the 12s' resonance of Ar is too narrow to be studied
equally well at the present level of photon energy resolu-
tion available.
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