12 research outputs found

    High-Density Genetic Linkage Map of the Southern Blue-ringed Octopus (Octopodidae: Hapalochlaena maculosa)

    Get PDF
    Genetic linkage maps provide a useful resource for non-model genomes and can aid in genome reassembly to form more contiguous pseudo-chromosomes. We present the first linkage map of any cephalopod, H. maculosa, composed of 47 linkage groups (LG). A total of 2166 single nucleotide polymorphisms and 2455 presence–absence variant loci were utilised by Lep-Map3 in linkage map construction. The map length spans 2016.62 cM with an average marker distance of 0.85 cM. Integration of the recent H. maculosa genome allowed 1151 scaffolds comprising 34% of the total genomic sequence to be orientated and/or placed using 1278 markers across all 47 LG. The linkage map generated provides a new perspective on HOX gene distribution in octopods. In the H. maculosa linkage map three (SCR, LOX4 and POST1) of six identified HOX genes (HOX1/LAB, SCR, LOX2, LOX4, LOX5, POST1) were located within the same LG (LG 9). The generation of a linkage map for H. maculosa has provided a valuable resource for understanding the evolution of cephalopod genomes and will provide a base for future work

    Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss

    Get PDF
    Background: Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. Findings: To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non–tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. Conclusions: We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family

    Vitamin D and Its Role During Pregnancy in Attaining Optimal Health of Mother and Fetus

    Get PDF
    Despite its discovery a hundred years ago, vitamin D has emerged as one of the most controversial nutrients and prohormones of the 21st century. Its role in calcium metabolism and bone health is undisputed but its role in immune function and long-term health is debated. There are clear indicators from in vitro and animal in vivo studies that point to vitamin D’s indisputable role in both innate and adaptive immunity; however, the translation of these findings to clinical practice, including the care of the pregnant woman, has not occurred. Until recently, there has been a paucity of data from randomized controlled trials to establish clear cut beneficial effects of vitamin D supplementation during pregnancy. An overview of vitamin metabolism, states of deficiency, and the results of recent clinical trials conducted in the U.S. are presented with an emphasis on what is known and what questions remain to be answered

    High-Density Genetic Linkage Map of the Southern Blue-ringed Octopus (Octopodidae: Hapalochlaena maculosa)

    No full text
    Genetic linkage maps provide a useful resource for non-model genomes and can aid in genome reassembly to form more contiguous pseudo-chromosomes. We present the first linkage map of any cephalopod, H. maculosa, composed of 47 linkage groups (LG). A total of 2166 single nucleotide polymorphisms and 2455 presence–absence variant loci were utilised by Lep-Map3 in linkage map construction. The map length spans 2016.62 cM with an average marker distance of 0.85 cM. Integration of the recent H. maculosa genome allowed 1151 scaffolds comprising 34% of the total genomic sequence to be orientated and/or placed using 1278 markers across all 47 LG. The linkage map generated provides a new perspective on HOX gene distribution in octopods. In the H. maculosa linkage map three (SCR, LOX4 and POST1) of six identified HOX genes (HOX1/LAB, SCR, LOX2, LOX4, LOX5, POST1) were located within the same LG (LG 9). The generation of a linkage map for H. maculosa has provided a valuable resource for understanding the evolution of cephalopod genomes and will provide a base for future work

    The evolution and origin of tetrodotoxin acquisition in the blue-ringed octopus (genus Hapalochlaena)

    No full text
    Tetrodotoxin is a potent non-proteinaceous neurotoxin, which is commonly found in the marine environment. Synthesised by bacteria, tetrodotoxin has been isolated from the tissues of several genera including pufferfish, salamanders and octopus. Believed to provide a defensive function, the independent evolution of tetrodotoxin sequestration is poorly understood in most species. Two mechanisms of tetrodotoxin resistance have been identified to date, tetrodotoxin binding proteins in the circulatory system and mutations to voltage gated sodium channels, the binding target of tetrodotoxin with the former potentially succeeding the latter in evolutionary time. This review focuses on the evolution of tetrodotoxin acquisition, in particular how it may have occurred within the blue-ringed octopus genus (Hapalochlaena) and the subsequent impact on venom evolution

    Pulsatilla cernua Spreng.

    No full text
    原著和名: オキナグサ科名: キンポウゲ科 = Ranunculaceae採集地: 熊本県 阿蘇郡 波野村 (肥後 阿蘇郡 波野村)採集日: 1996/5/17採集者: 萩庭丈壽整理番号: JH035093国立科学博物館整理番号: TNS-VS-98509

    Combined Transcriptomic and Proteomic Analysis of the Posterior Salivary Gland from the Southern Blue-Ringed Octopus and the Southern Sand Octopus

    No full text
    This study provides comprehensive proteomic profiles from the venom producing posterior salivary glands of octopus (superorder Octopodiformes) species. A combined transcriptomic and proteomic approach was used to identify 1703 proteins from the posterior salivary gland of the southern blue-ringed octopus, <i>Hapalochlaena maculosa</i> and 1300 proteins from the posterior salivary gland of the southern sand octopus, <i>Octopus kaurna</i>. The two proteomes were broadly similar; clustering of proteins into orthogroups revealed 937 that were shared between species. Serine proteases were particularly diverse and abundant in both species. Other abundant proteins included a large number of secreted proteins, many of which had no known conserved domains, or homology to proteins with known function. On the basis of homology to known venom proteins, 23 putative toxins were identified in <i>H. maculosa</i> and 24 in <i>O. kaurna</i>. These toxins span nine protein families: CAP (cysteine rich secretory proteins, antigen 5, parthenogenesis related), chitinase, carboxylesterase, DNase, hyaluronidase, metalloprotease, phospholipase, serine protease and tachykinin. Serine proteases were responsible for 70.9% and 86.3% of putative toxin expression in <i>H. maculosa</i> and <i>O. kaurna</i>, respectively, as determined using intensity based absolute quantification (iBAQ) measurements. Phylogenetic analysis of the putative toxin serine proteases revealed a similar suite of diverse proteins present in both species. Posterior salivary gland composition of <i>H. maculosa</i> and <i>O. kaurna</i> differ in several key aspects. While <i>O. kaurna</i> expressed the proteinaceous neurotoxin, tachykinin, this was absent from <i>H. maculosa</i>, perhaps reflecting the acquisition of a potent nonproteinaceous neurotoxin, tetrodotoxin (TTX) produced by bacteria in the salivary glands of that species. The dispersal factor, hyaluronidase was particularly abundant in <i>H. maculosa</i>. Chitinase was abundant in both species and is believed to facilitate envenomation in chitinous prey such as crustaceans. Cephalopods represent a largely unexplored source of novel proteins distinct from all other venomous taxa and are of interest for further inquiry, as novel proteinaceous toxins derived from venoms may contribute to pharmaceutical design

    Enoch Powell’s 'Rivers of Blood' speech: A Rhetorical Political Analysis

    No full text
    This article exploits the developing political science literature on rhetorical political analysis (RPA) and applies it to one of the most controversial speeches of the post-war era in British politics. Alongside an analysis of the roots and impact of Powell’s ‘Rivers of Blood’ speech the article deconstructs Powell’s rhetoric and oratory. In doing so the article moves beyond the traditional modes of analysing the speech, which focus on the reproduction of ‘new racisms’ and that are prevalent within the sociological and social psychology academic literature. By using RPA the article considers the speech through the use of the rhetorical techniques of persuasion (i) appeals to ethos – that is, the persona of the speaker; (ii) pathos – that is, the range of emotions evoked; (iii) or logos – that is, the evidence that supports the arguments underpinning the speech. This type of analysis showcases how and why Powell’s speech made such an impact when just as inflammatory comments had been uttered by other Conservatives before 1968
    corecore