1,009 research outputs found
Differentiation and Protective Capacity of Virus-Specific CD8
Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche. Chronic infections often cause T cell dysfunction, but how noroviruses (NV) evade immunity is unknown. Tomov et al. show that gut-resident T cells against NV remain functional but ignorant of chronic viral replication, suggesting that NV persists in an immune-privileged enteric niche. © 2017 Elsevier Inc
Enhancing therapeutic vaccination by blocking PD-1–mediated inhibitory signals during chronic infection
Therapeutic vaccination is a potentially promising strategy to enhance T cell immunity and viral control in chronically infected individuals. However, therapeutic vaccination approaches have fallen short of expectations, and effective boosting of antiviral T cell responses has not always been observed. One of the principal reasons for the limited success of therapeutic vaccination is that virus-specific T cells become functionally exhausted during chronic infections. We now provide a novel strategy for enhancing the efficacy of therapeutic vaccines. In this study, we show that blocking programmed death (PD)-1/PD-L1 inhibitory signals on exhausted CD8+ T cells, in combination with therapeutic vaccination, synergistically enhances functional CD8+ T cell responses and improves viral control in mice chronically infected with lymphocytic choriomeningitis virus. This combinatorial therapeutic vaccination was effective even in the absence of CD4+ T cell help. Thus, our study defines a potent new approach to augment the efficacy of therapeutic vaccination by blocking negative signals. Such an approach may have broad applications in developing treatment strategies for chronic infections in general, and perhaps also for tumors
Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells
Immunity to intracellular pathogens requires dynamic balance between terminal differentiation of short-lived, cytotoxic effector CD8+ T cells and self-renewal of central–memory CD8+ T cells. We now show that T-bet represses transcription of IL-7Rα and drives differentiation of effector and effector–memory CD8+ T cells at the expense of central–memory cells. We also found T-bet to be overexpressed in CD8+ T cells that differentiated in the absence of CD4+ T cell help, a condition that is associated with defective central–memory formation. Finally, deletion of T-bet corrected the abnormal phenotypic and functional properties of “unhelped” memory CD8+ T cells. T-bet, thus, appears to function as a molecular switch between central– and effector–memory cell differentiation. Antagonism of T-bet may, therefore, represent a novel strategy to offset dysfunctional programming of memory CD8+ T cells
Cytotoxic polyfunctionality maturation of cytomegalovirus-pp65-specific CD4 + and CD8 + T-cell responses in older adults positively correlates with response size
Cytomegalovirus (CMV) infection is one of the most common persistent viral infections in humans worldwide and is epidemiologically associated with many adverse health consequences during aging. Previous studies yielded conflicting results regarding whether large, CMV-specific T-cell expansions maintain their function during human aging. In the current study, we examined the in vitro CMV-pp65-reactive T-cell response by comprehensively studying five effector functions (i.e., interleukin-2, tumor necrosis factor-α, interferon-γ, perforin, and CD107a expression) in 76 seropositive individuals aged 70 years or older. Two data-driven, polyfunctionality panels (IL-2-associated and cytotoxicity-associated) derived from effector function co-expression patterns were used to analyze the results. We found that, CMV-pp65-reactive CD8 + and CD4 + T cells contained similar polyfunctional subsets, and the level of polyfunctionality was related to the size of antigen-specific response. In both CD8 + and CD4 + cells, polyfunctional cells with high cytotoxic potential accounted for a larger proportion of the total response as the total response size increased. Notably, a higher serum CMV-IgG level was positively associated with a larger T-cell response size and a higher level of cytotoxic polyfunctionality. These findings indicate that CMV-pp65-specific CD4 + and CD8 + T cell undergo simultaneous cytotoxic polyfunctionality maturation during aging
Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity.
Memory CD8 T cells can provide long-term protection against tumors, which depends on their enhanced proliferative capacity, self-renewal and unique metabolic rewiring to sustain cellular fitness. Specifically, memory CD8 T cells engage oxidative phosphorylation and fatty acid oxidation to fulfill their metabolic demands. In contrast, tumor-infiltrating lymphocytes (TILs) display severe metabolic defects, which may underlie their functional decline. Here, we show that overexpression of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis (MB), favors CD8 T cell central memory formation rather than resident memory generation. PGC-1α-overexpressing CD8 T cells persist and mediate more robust recall responses to bacterial infection or peptide vaccination. Importantly, CD8 T cells with enhanced PGC-1α expression provide stronger antitumor immunity in a mouse melanoma model. Moreover, TILs overexpressing PGC-1α maintain higher mitochondrial activity and improved expansion when rechallenged in a tumor-free host. Altogether, our findings indicate that enforcing mitochondrial biogenesis promotes CD8 T cell memory formation, metabolic fitness, and antitumor immunity in vivo
Consumer credit in comparative perspective
We review the literature in sociology and related fields on the fast global growth of consumer credit and debt and the possible explanations for this expansion. We describe the ways people interact with the strongly segmented consumer credit system around the world—more specifically, the way they access credit and the way they are held accountable for their debt. We then report on research on two areas in which consumer credit is consequential: its effects on social relations and on physical and mental health. Throughout the article, we point out national variations and discuss explanations for these differences. We conclude with a brief discussion of the future tasks and challenges of comparative research on consumer credit.Accepted manuscrip
Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host
The cellular adaptive immune response plays a key role in resolving influenza
infection. Experiments where individuals are successively infected with
different strains within a short timeframe provide insight into the underlying
viral dynamics and the role of a cross-reactive immune response in resolving an
acute infection. We construct a mathematical model of within-host influenza
viral dynamics including three possible factors which determine the strength of
the cross-reactive cellular adaptive immune response: the initial naive T cell
number, the avidity of the interaction between T cells and the epitopes
presented by infected cells, and the epitope abundance per infected cell. Our
model explains the experimentally observed shortening of a second infection
when cross-reactivity is present, and shows that memory in the cellular
adaptive immune response is necessary to protect against a second infection.Comment: 35 pages, 12 figure
Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70
Various subsets of invariant natural killer T (iNKT) cells with different cytokine productions develop in the mouse thymus, but the factors driving their differentiation remain unclear. Here we show that hypomorphic alleles of Zap70 or chemical inhibition of Zap70 catalysis leads to an increase of IFN-gamma-producing iNKT cells (NKT1 cells), suggesting that NKT1 cells may require a lower TCR signal threshold. Zap70 mutant mice develop IL-17-dependent arthritis. In a mouse experimental arthritis model, NKT17 cells are increased as the disease progresses, while NKT1 numbers negatively correlates with disease severity, with this protective effect of NKT1 linked to their IFN-gamma expression. NKT1 cells are also present in the synovial fluid of arthritis patients. Our data therefore suggest that TCR signal strength during thymic differentiation may influence not only IFN-gamma production, but also the protective function of iNKT cells in arthritis
- …