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SUMMARY

Noroviruses can establish chronic infections with active viral shedding in healthy humans but 

whether persistence is associated with adaptive immune dysfunction is unknown. We used 

genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell 

differentiation during chronic infection. We found that chronic infection drove MNV-specific 

tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary 

effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These 
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MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral 

replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic 

infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid 

sequestration of viral replication away from T cells. Our studies revealed a strategy of immune 

evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent 

pathogens and persistence in an immune-privileged enteric niche.

IN BRIEF

Chronic infections often cause T cell dysfunction, but how noroviruses (NV) evade immunity is 

unknown. Tomov et al. show that gut-resident T cells against NV remain functional but ignorant of 

chronic viral replication, suggesting that NV persists in an immune-privileged enteric niche.

Keywords

Norovirus; enteric viral persistence; T cell inflation; T cell exhaustion; tissue-resident memory T 
cells

INTODUCTION

Noroviruses (NVs) are major global pathogens that cause an estimated 267 million 

infections and 200,000 deaths each year (Debbink et al., 2012). Vaccine efforts have shown 

promise, but complete protection against homologous challenge has not been achieved 

(Atmar et al., 2011). Moreover, volunteer and epidemiologic studies have generated 

conflicting data regarding the durability and protective capacity of NV immunity, while 

recent reports of persistent NV shedding by immunocompetent individuals have challenged 

the traditional view of NVs as acute and self-limited pathogens (Karst et al., 2014). These 

data suggest the existence of viral mechanisms of immune evasion, however the 

immunological determinants of NV clearance versus persistence remain poorly understood. 

Most studies have used antibodies as markers of pre-existing NV immunity and have shown 
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that, depending on the setting, such responses are neither necessary nor sufficient for 

protection (Atmar et al., 2011). In contrast, cellular immunity, particularly at mucosal sites, 

remains largely unexplored.

We and others have used the mouse model of NV infection (MNV) to study MNV clearance 

versus persistence (Tomov et al., 2013). Early studies showed that all aspects of adaptive 

immunity are required for clearance of the non-persisting strain MNV-CW3 (Karst et al., 

2014). On the other hand, a related strain, MNV-CR6, causes chronic infection even in 

immunocompetent mice. Recent studies have shown that MNV-CR6 persistence depends on 

the enteric microbiota and can be prevented by pre-treating mice with antibiotics (Baldridge 

et al., 2015; Jones et al., 2014). Whether these findings reflect direct bacterial-viral 

interactions (Kuss et al., 2011) or commensal modulation of the host antiviral immune 

response (Abt et al., 2012) remains to be defined. In addition, persistent MNV-CR6 infection 

can be cleared by exogenous interferon-lambda (Nice et al., 2015), however this 

phenomenon is mediated by innate immunity and does not afford protection against 

subsequent re-challenge with the same strain. Thus, adaptive immune responses will be 

necessary to achieve durable immunity against MNV.

A key challenge to understanding MNV persistence is our limited knowledge of the host-

pathogen interactions responsible for immune failure during chronic infection. Myeloid 

cells, B cells, and epithelial cells can support mouse and/or human NV replication in cell 

culture (Ettayebi et al., 2016; Jones et al., 2014), but the relevance of these cell types to 

persistence in vivo is unclear, and the precise cellular identity and anatomical location of the 

viral reservoir remain unknown. The identification of CD300lf as an MNV cellular receptor 

is a major step towards addressing this issue (Orchard et al., 2016). However, it is unclear 

whether CD300lf is sufficient to explain viral replication during established chronic 

infection as CD300lf expression is largely restricted to dendritic cells (DCs) (Gasiorowski et 

al., 2013) but persisting MNV-CR6 replicates in nonhematopoietic cells in vivo (Nice et al., 

2015).

In previous studies, we demonstrated that the non-persisting strain MNV-CW3 induces 

robust virus-specific CD8+ T cell responses in the intestine (Tomov et al., 2013). In contrast, 

infection with the persisting strain MNV-CR6 is associated with substantially fewer and 

less-functional virus-specific CD8+ T cells, suggesting that suboptimal T cell responses may 

contribute to viral persistence (Tomov et al., 2013). However, as the sequence of the 

immunodominant P1519 epitope differs between these two MNV strains, it was unclear 

whether the weak CD8+ T cell response to MNV-CR6 was due to intrinsic CD8+ T cell 

dysfunction or suboptimal epitope binding. In the current study, we have addressed this issue 

by engineering acute and chronic MNV strains that share the same immunodominant CD8+ 

T cell epitope. Using these strains, we demonstrate that improving the magnitude of the 

primary CD8+ T cell response did not prevent viral persistence. Moreover, virus-specific 

CD8+ T cells from chronic MNV infection developed a distinct transcriptional and 

phenotypic signature compared to memory CD8+ T cells generated during acutely-resolved 

infection. These cells showed strong similarity to inflationary effector CD8+ T cells 

responding to mouse cytomegalovirus (MCMV) infection. Consistent with these 

transcriptional features, virus-specific CD8+ T cells from chronic MNV infection remained 
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responsive to antigen upon re-exposure, indicating that they retained functionality. MNV-

specific memory CD8+ T cells mediated initial protection from challenge with a persisting 

MNV strain but in most cases this protection was short-lived. Analysis of early events 

following challenge of immunized mice revealed a marked deficiency in the ability of MNV-

specific CD8+ T cells to respond to the chronic strain of MNV. Rather, during chronic 

infection, MNV-specific CD8+ T cells were largely ignorant of ongoing viral replication in 
vivo. Moreover, MNV-specific CD8+ T cells also failed to respond in vitro when co-cultured 

with intestinal cells from chronically infected mice unless the intestinal cells were first lysed 

to release antigen. Collectively our findings show that MNV persistence was associated with 

a unique differentiation state of virus-specific CD8+ T cells. While such cells could, in some 

settings, confer protection against MNV, T cell ignorance emerged early during chronic 

infection, likely due to the establishment of an immunoprivileged enteric niche that 

supported long-term viral replication. These findings further provide an explanation for the 

emergence of chronic NV infections and may help explain heterogeneous responses in 

humans.

RESULTS

Single amino acid determines the magnitude and function of MNV-specific CD8+ T cells

We previously mapped a conserved immunodominant epitope (P1519) that accounts for 

~80% of the total CD8+ T cell response against MNV (Figure S1A, and (Tomov et al., 

2013)). However, P1519 differs at position 7 between strains CW3 (Tyr) and CR6 (Phe), 

preventing direct comparison of epitope-specific CD8+ T cell responses. To address this 

issue, we changed position 7 in P1519 from Tyr to Phe (Y→F) or Phe to Tyr (F→Y) in 

MNV-CW3 and MNV-CR6, respectively, generating recombinant strains CR6F→Y and 

CW3Y→F (Figure 1A). These reverse engineered viruses grew with normal kinetics in the 

mouse macrophage-like RAW-264.7 cell line indicating that the changes in P1519 did not 

affect viral fitness in vitro (Figure 1B).

At day 8 p.i., mice infected with MNV-CW3Y→F had significantly fewer P1519 Tetramer-

positive (Tet+) CD8+ T cells in the intestine compared to MNV-CW3WT-infected mice 

(Figure 1C). Conversely, infection with MNV-CR6F→Y resulted in a substantial boost in 

virus-specific CD8+ T cell responses with numbers of Tet+CD8+ T cells in the intestine 

approaching those from MNV-CW3WT infection (Figure 1C–D). Similar changes were 

observed in the spleen where P1519-specific CD8+ T cells accounted for ~50–75% of the 

MNV-induced CD44hiCD62Llo CD8+ T cells for MNV-CW3WT and MNV-CR6F→Y, 

compared to 20–30% for MNV-CR6WT and MNV-CW3Y→F (Figure 1E). Moreover, the 

difference in the Tet+CD8+ T cell response between MNV-CR6WT and MNV-CR6F→Y 

persisted long-term (Figure 1F). Tet+CD8+ T cells responding to MNV-CR6F→Y produced 

more cytokine and were more polyfunctional (i.e. co-produced cytokines more efficiently) 

compared to Tet+CD8+ T cells from MNV-CR6WT-infected mice (Figures 1G, H; Figure 

S1B). Conversely, MNV-CW3Y→F induced Tet+CD8+ T cells with less polyfunctionality 

compared to MNV-CW3WT (Figure S1B). Moreover, the changes in P1519 did not 

inadvertently create a CD4+ T cell epitope (Figure S1C) or affect the overall antibody 

response (Figure S1D). Thus, position 7 of P1519 determines both the magnitude and quality 
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of the CD8+ T cell response without affecting other aspects of adaptive immunity against 

MNV.

MNV persistence versus clearance is independent of the CD8+ T cell response

To determine the effect of P1519-specific CD8+ T cells on MNV persistence, viral RNA was 

measured in the stool and intestine following infection with the parental and epitope-swap 

strains. MNV-CW3WT and MNV-CW3Y→F were efficiently cleared by ~day 10 p.i. (Figure 

1I, J). By contrast, MNV-CR6F→Y established chronic infection indistinguishably from the 

parental CR6WT strain (Figure 1I, J). Moreover, Tet+CD8+ T cells responding to persisting 

MNV-CR6F→Y maintained high expression of granzyme B and retained their cytotoxic 

potential at day 30 p.i. (Figure 1K, L), suggesting that exhaustion did not contribute to MNV 

persistence. Changes in P1519 did not impact CD4+ or regulatory T cell (Treg cell) responses 

(Figure S2A–C). Thus, MNV-CW3WT and CR6F→Y elicit similar adaptive immune 

responses and can be used to directly compare CD8+ T cells against the same epitope in 

acute versus chronic infection. Moreover, epitope reversion did not explain MNV-CR6F→Y 

persistence as the F→Y mutation was maintained even after 6 months of chronic infection 

(Figure 1M). Together these observations indicated that an augmented primary CD8+ T cell 

response did not exert immune pressure on MNV-CR6F→Y and was not sufficient to prevent 

persistence.

Distinct transcriptional profiles of Tet+CD8+ T cells in acute versus chronic MNV infection

We compared the transcriptional profiles of intestinal Tet+CD8+ T cells from mice infected 

with MNV-CW3WT or MNV-CR6F→Y where the same epitope was being targeted. At day 

30 p.i., 423 genes were differentially expressed by at least 2-fold (ANOVA p value <0.05). 

Among genes upregulated during MNV-CR6F→Y infection were some with known roles in 

CD8+ T cell differentiation such as Itga2, Il12rb2, Cxcl10, and Fas, and others encoding the 

inhibitory molecules 2B4, Tim-3 and KLRG1 (Figure 2A). Genes that were downregulated 

during MNV-CR6F→Y infection included Il2, Sipr1, Tcf7, Lef1, Btla, Cxcr4, Slamf6, 
Ly6c2, Cd40lg, Klrk1, and Pdcd1 (Figure 2A).

Gene set enrichment analysis (GSEA) using gene ontology (GO) terms indicated that Tet
+CD8+ T cells from chronically-infected mice were mitotically and metabolically active and 

upregulated genes involved in cell division, aerobic respiration, and lipid metabolism (Figure 

2B). On the other hand, Tet+ memory CD8+ cells from resolved MNV-CW3WT infection 

upregulated genes associated with adaptive immune responses, T cell receptor (TCR) 

signaling, and cytokine production (Figure 2C). Thus, despite responding to the same 

epitope, CD8+ T cells induced during MNV-CW3WT versus MNV-CR6F→Y infection 

developed distinct metabolic and proliferative transcriptional programs.

Consistent with previous analyses (Tomov et al., 2013), expression of Pdcd1 encoding the 

inhibitory receptor PD-1, was lower in Tet+CD8+ T cells from chronic compared to resolved 

MNV infection. Another gene associated with T cell exhaustion, Btla, showed a similar 

pattern of relative expression (Figure 2A). On the other hand, genes for the inhibitory 

receptors 2B4 (Cd244) and Tim3 (Havcr2) were upregulated in Tet+CD8+ T cells from 

MNV-CR6F→Y infection, as was KLRG-1 (Figure 2A). Moreover, protein expression 
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correlated with transcriptional differences for a number of differentially transcribed genes 

(Figure 2D). In sum, these data indicate an unusual differentiation state of MNV-specific 

CD8+ T cells compared to typical exhausted CD8+ T cells defined in studies of chronic 

LCMV and HIV infection (Wherry and Kurachi, 2015).

Distinct tissue resident CD8+ T cell subsets exist in acute versus chronic MNV infection

We have previously noted differences in the expression of several integrins on Tet+CD8+ T 

cells from acute versus chronic MNV infection (Tomov et al., 2013). Gene expression 

analysis confirmed 1.97-fold higher expression of Itgae (encoding CD103) in Tet+CD8+ T 

cells from MNV-CR6F→Y infection (ANOVA P value <0.05). As CD103 is a marker of 

tissue residence (Carbone et al., 2013), we conducted additional analyses for expression of 

tissue residence memory (Trm) cell genes and proteins. At day 30 post MNV-CW3WT 

infection, a significant fraction of Tet+CD8+ T cells from the lamina propria (LP) and 

intraepithelial (IEL) compartments remained CD103lo (Figure 3A). By contrast, most Tet
+CD8+ T cells from the small intestine and colon of mice infected with MNV-CR6F→Y were 

CD103hi (Figure 3A–B) consistent with previous observations for MNV-CR6WT (Tomov et 

al., 2013). The ratio of CD103hi to CD103lo Tet+ CD8+ T cells remained constant during 

MNV-CW3WT infection, but shifted to a predominantly CD103hi phenotype with MNV-

CR6F→Y (Figure 3C). In contrast to CD103, CD11a and CD49d were more highly 

expressed on Tet+CD8+ T cells from MNV-CW3WT compared to MNV-CR6F→Y infection 

(Figure 3D), consistent with differences between the WT strains (Tomov et al., 2013). 

Therefore, the distinct pattern of α-integrin expression by Tet+CD8+ T cells responding to 

MNV-CR6F→Y is attributable to chronic infection rather than the F→Y change in P1519.

Upregulation of CD103 is not an absolute requirement for tissue residence and CD103lo Trm 

cells are critical for control of some enteric pathogens (Bergsbaken and Bevan, 2015). 

Alternatively, the CD103lo Tet+CD8+ T cells from MNV-CW3WT-infected mice might be 

recirculating T cells rather than true Trm cells (Carbone et al., 2013). To distinguish between 

these possibilities, we used intravascular staining for CD8α (Beura et al., 2015), which 

distinguished between anatomic compartments with different access to the circulation 

(Figure 3E, CD8α+ vs. CD8α− cells). In the intestine, 99% of CD8+ LPL and IEL were 

inaccessible to the i.v. administered antibody indicating that they were not from blood 

contamination (Figure 3E, green gates). Furthermore, these gut-associated lymphocytes 

contained both CD103lo and CD103hi Tet+ cells, suggesting that both CD103-defined 

subsets were Trm cells (Figure 3F).

To further investigate MNV-specific CD8+ T cell tissue residence, we applied GSEA using a 

Trm cell signature (Mackay et al., 2013). As expected, Trm cell genes were enriched in 

intestinal relative to splenic Tet+CD8+ T cells at all time points for both viruses (Figure S3). 

Comparison of enteric Tet+CD8+ T cells from MNV-CW3WT versus MNV-CR6F→Y showed 

a more prominent Trm cell program induced early during acutely-cleared infection (Figure 

3G). By day 15, this enrichment bias was no longer evident (Figure 3H), while by day 30 

p.i., the Trm cell signature was more highly enriched in Tet+CD8+ T cells from MNV-

CR6F→Y infection (Figure 3I). Although at day 8 p.i. Trm cell signature enrichment was 

driven by 12 core genes, only 5 genes contributed at day 30 p.i. (Figure 3J). Therefore Tet
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+CD8+ T cells from either infection upregulated Trm cell-associated genes but in the case of 

MNV-CR6F→Y induction of the Trm cell program appeared to be delayed.

Next, we used a MNV-CW3WT and MNV-CR6F→Y coinfection model. We reasoned that if 

the timing of Trm cell differentiation was important for the outcome of infection, either 

MNV-CW3WT would induce early Trm cells leading to control of the co-infecting MNV-

CR6F→Y or co-infection with MNV-CR6F→Y would suppress Trm cell differentiation. 

Coinfected mice developed chronic infection with indistinguishable kinetics from mice 

infected with MNV-CR6F→Y alone indicating that MNV-CW3WT failed to induce a 

protective CD8+ T cell response (Figure 3K, L). Moreover, at day 30 both persistently 

infected mice from the MNV-CR6F→Y alone and the co-infected group had higher 

expression of CD103 on Tet+CD8+ cells compared to resolved MNV-CW3WT infection 

(Figure 3M). Thus, although CD8+ T cells are necessary for clearance of MNV-CW3WT 

(Chachu et al., 2008), these cells failed to prevent viral persistence in the setting of 

coinfection. Moreover, the persisting MNV strain determined the long-term phenotype of 

Tet+CD8+ T cells. Thus, a distinct viral mechanism of immune evasion, rather than intrinsic 

CD8+ T cell dysfunction enables MNV-CR6F→Y persistence.

Persistent MNV infection induces a unique transcriptional program in Tet+CD8+ T cells

Next, we defined transcriptional signatures of CD8+ T cells responding to persisting or 

resolved MNV infection using differentially expressed genes at day 30 p.i. (Figure 2A). We 

tested for enrichment of these MNV signatures in the transcriptional profiles of CD8+ T 

cells from acute versus chronic lymphocytic choriomeningitis virus (LCMV) infection 

(Doering et al., 2012). Indeed, GSEA revealed enrichment for the MNV-CR6F→Y signature 

in CD8+ T cells from chronic LCMV infection (Figure S4A). Conversely, the MNV-CW3WT 

signature was enriched in functional memory CD8+ T cells from resolved LCMV infection 

(Figure S4B). The transcriptional similarity between CD8+ T cells responding to chronic 

MNV and LCMV infections was driven, in part, by genes encoding exhaustion markers 

Tim3 and 2B4, integrin CD49b, and cytokine CXCL10 (Figure S4A). However, genes for 

other key markers of exhaustion, such as Pdcd1, were not part of the MNV-CR6F→Y CD8+ 

T cell signature and did not contribute to core enrichment in Figure S4A. To investigate this 

question further, we used published immunologic signatures to perform comprehensive 

GSEA of Tet+CD8+ T from day 30 MNV-CR6F→Y infection. There was significant 

enrichment of several exhaustion signatures derived from the LCMV model (Figure 4A) 

consistent with Figure S4A (Doering et al., 2012; West et al., 2011). However, the 

transcriptional profile of Tet+CD8+ T was also enriched for effector signatures (Figure 4B), 

defined as genes upregulated on day 8 versus 30 of LCMV or vaccinia virus infection. As 

effector and exhausted CD8+ T cells share features of activation (Doering et al., 2012; 

Singer et al., 2016), we used leading edge analysis to determine whether the same core 

genes contributed to enrichment for both types of signatures during MNV-CR6F→Y 

infection. Of the 489 genes driving enrichment for the exhaustion and effector signatures in 

Figure 4A–B, only 38 contributed to enrichment of both an exhaustion and an effector 

(Figure 4C). Moreover, only Litaf, encoding lipopolysaccharide (LPS)-induced tumor 

necrosis factor (TNF), contributed to more than one of the exhaustion and effector signatures 

used in the comparison. Thus, Tet+CD8+ T cells from chronic MNV-CR6F→Y infection had 
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features of both exhausted and effector CD8+ T cells and these characteristics were largely 

driven by non-overlapping sets of genes, possibly reflecting recent activation and/or 

heterogeneity in the populations analyzed. By contrast, the transcriptome of Tet+CD8+ T 

cells from resolved MNV-CW3WT infection enriched for signatures of memory and/or 

quiescence, consistent with viral clearance (Figure S4C).

Given the preserved effector features of Tet+CD8+ T cells from chronic MNV infection, we 

considered the murine cytomegalovirus (MCMV) model of viral persistence that is 

characterized latency and reactivation. These viral dynamics give rise to inflationary virus-

specific CD8+ T cells that maintain an effector phenotype and do not become exhausted 

despite repeated antigenic stimulation (Snyder, 2011). GSEA showed enrichment of an 

inflationary effector CD8+ T cell signature (Quinn et al., 2015) in the transcriptional profile 

of CD8+ T cells responding to persistent MNV-CR6F→Y infection (Figures 4D and S4D), 

suggesting long-term maintenance of a functional effector CD8+ T cell (Teff cell) response. 

Indeed, the normalized enrichment scores (NES) for effector signatures in Figure 4B and 4D 

were higher than the NES for exhaustion signatures in Figure 4A (Figure 4E). Moreover, of 

the 45 genes that contributed to core enrichment of the MCMV Teff cell signature (Figure 

S4D), 18 (40%) also contributed to enrichment of other effector signatures (Figure 4F) while 

none contributed to enrichment of exhaustion signatures. Therefore, the transcriptional 

similarities between CD8+ T cells responding to chronic MNV and latent MCMV infection 

can be largely attributed to effector genes.

Phenotypic features of inflationary CD8+ T cells include upregulation of granzyme and 

CX3CR1 and downregulation of the co-stimulatory molecules CD27, CD28, and GITR 

(Snyder, 2011; van de Berg et al., 2012; Welten et al., 2013). Indeed, at day 30 of MNV-

CR6F→Y compared to MNV-CW3WT infection Tet+CD8+ T cells had higher expression of 

granzyme B and lower expression of CD28 and GITR proteins (Figure S4E). Consistent 

with their inflationary differentiation pattern, Tet+CD8+ T cells during chronic MNV-

CR6F→Y infection persisted long-term and comprised a significant fraction of intestinal 

CD8+ T cells at day 60 p.i. (Figure 4G). Thus, Tet+CD8+ T cells from chronic MNV-

CR6F→Y infection share transcriptional and phenotypic features with inflationary Teff CD8+ 

T cells from latent MCMV infection.

Tet+CD8+ T cells from chronic MNV infection respond to antigen in vivo

To define in vivo functionality, Tet+CD8+ T cells from chronic MNV-CR6F→Y infection 

were isolated, labeled with cell trace violet (CTV), and adoptively transferred into congenic 

recipients. These recipients were either naïve, acutely infected with MNV-CW3WT (day 4 

p.i.) or chronically infected with MNV-CR6F→Y (day 60 p.i.) (Figure 5A–C). As expected, 5 

days post transfer, donor Tet+CD8+ T cells had not divided in naïve hosts (Figure 5A). 

However, in mice acutely infected with MNV-CW3WT, donor Tet+CD8+ T cells divided 

extensively, expanded in number, and homed to the spleen, mesenteric lymph nodes 

(MLNs), and intestine (Figure 5B). Donor Tet+CD8+ T cells were particularly abundant in 

the intestine where they accounted for up to 80% of all donor-derived CD8+ T cells (Figure 

5D). Thus, MNV-specific CD8+ T cells isolated even after 60 days of chronic infection were 

still capable of mounting robust responses to viral antigen in vivo during acute infection.

Tomov et al. Page 8

Immunity. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, when the same Tet+CD8+ T cells were adoptively transferred to recipients that 

were chronically infected with MNV-CR6F→Y, these cells did not expand in number and 

were difficult to detect 5 days post transfer (Figure 5C). In a few chronically infected 

recipients, donor Tet+CD8+ T cells could be found in the intestine but these cells had not 

divided and accounted for less than 10% of all donor CD8+ T cells (Figure 5D), suggesting 

they had not encountered antigen. Consistent with this conclusion, viral loads in these mice 

remained unchanged after the adoptive transfer (data not shown).

The failure of adoptively transferred Tet+CD8+ T cells to respond to MNV-CR6F→Y 

suggested that these cells were ignorant of persisting antigen. Alternatively, poor donor 

responses might be due to competition from pre-existing host CD8+ T cells (Quinn et al., 

2015). Therefore, we repeated the adoptive transfer experiment in Figure 5A–C using 

Thy1.1 (recipients) and Thy1.2 (donors) as congenic markers, and used an anti-Thy1.1 

antibody to selectively deplete host T cells from recipients prior to the adoptive transfer 

(Figure S5A–B). Five days post transfer, donor Thy1.2+CD8+ T cells were detected in all 

tissues examined but had not proliferated significantly in most mice (Figure S5C). Depletion 

of host T cells did enhance overall donor cell survival, especially in MLN, however this 

effect was modest and observed in both naïve and chronically-infected mice, suggesting 

homeostatic proliferation rather than an antigen-specific response (Figure S5C). Indeed, 

most CTV-low donor CD8+ T cells were not Tet+ in either naïve or CR6F→Y-infected mice 

(Figure 5E–G). Adoptively-transferred CD8+ T cells were most abundant in the MLN of 2 

out of 5 persistently infected Thy1.1-depleted recipients (Figure S5C, blue circles in MLN 

plot), however even in these mice Tet+ cells accounted for less than 0.5% of total donor cells 

(Figure 5H). Similarly, Tet+ cells accounted for at most 11% of donor CD8 T cells in the 

IEL and this was seen in just 1 out of 5 recipients (Figure 5H). Thus, even when depletion of 

host T cells gave an overall survival advantage, Tet+ cells failed to respond to chronic MNV-

CR6F→Y infection.

Consistent with Figure 5B, when Thy1.2+CD8+ T cells were adoptively transferred into 

mice acutely infected with MNV-CW3WT, Tet+ donor cells proliferated robustly even 

without host T cell depletion (Figure 5G). By day 5 post transfer, virtually all Tet+ donor 

cells had diluted CTV and accounted for nearly half of donor cells in the gut (Figure 5H). 

Compared to Figure 5B, donor Tet+ cell expansion was less robust (red bars in Figure 5H 

versus 5D), consistent with the different timing of these adoptive transfers (recipient mice 

day 4 p.i. in Figure 5B versus day 1 p.i. in Figure 5H) and the fact that MNV-CW3WT viral 

titers peak at ~day 4 (data not shown). Collectively, these data demonstrate that despite 

having the capacity to respond to antigen in vivo, virus-specific CD8+ T cells fail to do so 

during chronic MNV-CR6F→Y infection and this defect is not due to T cell competition. 

Therefore, Tet+CD8+ T cells in persistently infected mice might be limited by an inability to 

efficiently detect viral antigen.

Preexisting CD8+ T cell immunity confers partial protection against chronic MNV

Given the response of Tet+CD8+ T cells to MNV-CW3WT (Figure 5C), we tested the 

effectiveness of pre-existing immunity against MNV-CR6F→Y. Mice that had previously 

cleared MNV-CW3WT or MNV-CW3Y→F were challenged with MNV-CR6F→Y or MNV-
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CR6WT and protection was measured by viral shedding and tissue titers. We carried out both 

“matched” and “mismatched” experiments in which the prime and challenge strains had the 

same or different P1519 epitopes. When taken together, there was no consistent pattern for 

priming strain related to control upon challenge (data not shown). Therefore, we combined 

data for MNV-CW3WT and MNV-CW3Y→F-immune mice and report all outcomes based on 

the chronic strain used in the challenge.

As expected, all non-immunized mice became chronically infected when challenged with 

MNV-CR6WT or MNV-CR6F→Y (Figure 6A–B, circles). Mice immunized with MNV-

CW3WT or MNV-CW3Y→F and then challenged with MNV-CR6WT also developed chronic 

infection (Figure 6A–B, solid squares). By contrast, all immune mice challenged with 

MNV-CR6F→Y had decreased viral shedding for the first 48–96 hours p.i. (Figure 6A, open 
squares; time points in blue box), although in most cases replication of the challenge MNV-

CR6F→Y virus eventually rebounded. However, ~1/3 of animals achieved long-term viral 

control with undetectable titers in the stool for at least ~30 days despite being co-housed 

with mice who remained infected and shedding virus (Figure 6A). At day 30 post challenge 

these protected mice also had undetectable viral titers in the proximal colon (Figure 6B).

These data showed that early viral control following MNV-CR6F→Y challenge was 

universal, whereas long-term protection was sporadic (Figure 6C). Long-term viral control 

did not correlate with the number or functionality of Tet+CD8+ T cells (data not shown), 

and boosting MNV-CW3WT-immune mice with a recombinant vaccinia virus expressing the 

P1519Y epitope did not improve outcomes to MNV-CR6F→Y challenge (data not shown) 

despite significantly augmenting the P1519-specific CD8+ T cell response (see Figure S6A, 

B). Taken together, these observations suggested that long-term protection was likely due to 

events that occurred early after viral challenge and prevented establishment of a niche for 

MNV-CR6F→Y persistence. Consistent with this interpretation, in 4 out of 6 primed mice 

that had developed chronic MNV-CR6F→Y infection (see box in Figure 6B) the F→Y 

mutation was preserved at day 30 post challenge (Figure 6D). Similarly, MNV-CR6F→Y 

sequences from the fecal pellets of 4 other primed and chronically-infected mice also 

contained the F→Y mutation (data not shown). These findings further suggested that CD8+ 

T cells failed to exert immune pressure on MNV-CR6F→Y in the chronic phase of infection. 

In 2 of the primed and chronically infected mice, the P1519Y epitope had, in fact, mutated 

back to P1519F (Figure 6D). Moreover, this was a true reversion since the Phe codon in these 

mutant sequences was TTC, whereas it is TTT in the wild-type CR6 strain (compare to 

Figure 1M). We hypothesize that this sequence change represents an alternative pathway of 

viral escape early after challenge when CD8+ T cells exerted some degree of control over 

viral replication.

As partial protection against chronic MNV was observed for MNV-CR6F→Y but never for 

MNV-CR6WT or in unimmunized mice, we surmised that such protection was mediated by 

CD8+ T cells. To directly test this conclusion, a subset of immunized mice was depleted of 

CD8+ T cells (Figure S6C) and viral titers were measured at early time points post MNV-

CR6F→Y challenge. Consistent with our previous observations, immunized mice with intact 

CD8+ T cells controlled viral replication at early time points (Figure 6E, squares). By 

contrast, most mice treated with anti-CD8β had high viral titers in the proximal colon at 
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days 4 and 6 post challenge (Figure 6G, triangles). Of note, we did not detect MNV in the 

liver or spleen of these CD8-depleted mice, consistent with the gut-specific tropism of 

MNV-CR6 (Nice et al., 2013). Thus, CD8+ T cells were necessary for early enteric control 

of MNV-CR6F→Y in immunized mice.

Inconsistent detection of antigen by Tet+CD8+ T cells early after MNV-CR6F→Y challenge

Prime-challenge data indicated a narrow window for Tet+ CD8+ T cells to clear MNV-

CR6F→Y (Figure 6A), while the adoptive transfers suggested that these cells were ignorant 

of viral replication during chronic infection (Figure 5C). To investigate these dynamics 

further, we generated a recombinant vaccinia virus expressing the P1519Y epitope (rVV519Y) 

and used it to boost the P1519-specific CD8+ T cell response in MNV-CW3WT-immune mice 

(Figure S6A–B). We used this prime-boost strategy to generate large numbers of Tet+CD8+ 

T cells, labeled these cells with CTV, and adoptively transferred them to congenic recipients. 

Recipients mice were either naïve or at different time points of MNV-CW3WT (day 1 or 7) 

or MNV-CR6F→Y (day 1, 7, or 30) infection.

As expected, no proliferation of donor Tet+CD8+ T cells was observed in naïve recipients 5 

days after adoptive transfer (Figure 7A). By contrast, donor Tet+CD8+ T cells divided 

extensively in all recipients at day 1 p.i. with MNV-CW3WT (Figure 7B). These, donor Tet
+CD8+ T cells homed to the spleen and MLN, as well as to the intestinal mucosa and LP 

where they accumulated to the highest frequency (Figure 7G). Consistent with the viral 

clearance kinetics for MNV-CW3WT (see Figure 1) there was little division or accumulation 

of donor Tet+CD8+ T cells in MNV-CW3WT-infected recipients at day 7 p.i., though 

occasional CTV dilution likely reflected presence of residual antigen (Figure 7C).

When Tet+CD8+ T cells were adoptively transferred to MNV-CR6F→Y-infected recipients at 

days 1 or 7 p.i., we observed heterogeneous responses (representative plots in Figure 7D–E). 

In some recipients, essentially no division of donor Tet+CD8+ T cells took place, while in 

others Tet+ donor cells divided extensively, although not to the same extent as with MNV-

CW3WT (Figure 7B versus D–E). When donor Tet+ cells responded to MNV-CR6F→Y, they 

accumulated primarily in the intestine where P1519-specific cells accounted for at most 30% 

of total donor CD8+ T cells (compared to 80% for MNV-CW3WT) (Figure 7G). At day 5 

post transfer, all MNV-CR6F→Y infected mice had detectable virus in the colon and there 

was no correlation between the extent of donor Tet+CD8+ T cell proliferation and intestinal 

viral titers in individual mice (data not shown). This was expected since the number of 

MNV-specific CD8+ T cells following adoptive transfer was low compared to intact MNV 

immune mice and these mice lacked preexisting CD4+ T cell and B cell immunity.

Despite ongoing viral replication (and consistent with Figure 5C), no significant division of 

donor CD8+Tet+ cells took place in recipients at day 30 post MNV-CR6F→Y infection and 

few donor cells were detected at this late time point (Figure 7F, G). Collectively, these data 

suggested that although MNV-specific CD8+ T cells could sense and respond to MNV-

CR6F→Y early after infection, these responses were sporadic and less robust than for MNV-

CW3WT. Moreover, the ability of Tet+CD8+ T cells to detect ongoing MNV-CR6F→Y 

replication waned over time and was nearly absent in established chronic infection.
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Failure of antigen presentation by chronically infected intestinal cells

The preserved functionality and progressive inability of Tet+CD8+ T cells to detect ongoing 

viral replication suggested that MNV-CR6F→Y was inaccessible to CD8+ T cells during 

established chronic infection. Alternatively, MNV-CR6F→Y might directly antagonize 

immune cell function via virally-encoded proteins (Zhu et al., 2016; Zhu et al., 2013). To 

distinguish between these possibilities, we designed an in vitro experiment to “force” 

interactions between Tet+CD8+ T cells and cells infected with MNV-CR6F→Y. CD8+ T cells 

from the spleens of day 30 MNV-CR6F→Y-infected mice were labeled with CTV and 

incubated with single-cell intestinal suspensions from congenic mice that were either naïve 

or also persistently infected with MNV-CR6F→Y. These “intestinal preps” contained 

multiple cell types including epithelial cells, fibroblasts, and immune subsets from the 

intraepithelial and LP compartments (data not shown). Although the cellular reservoir of 

persisting MNV-CR6F→Y is currently unknown, we reasoned that cells harboring virus were 

likely to be present in intestinal preps.

Intestinal preps from naïve mice did not stimulate Tet+CD8+ T cell division (Figure 7H). 

Preps from persistently-infected mice also failed to induce an MNV-specific CD8+ T cell 

response (Figure 7I), consistent with in vivo observations (Figure 5C). To determine whether 

host or viral factors prevented Tet+CD8+ T cell responses, intestinal preps from chronically 

infected mice were lysed via freeze-thaw to release potentially inaccessible intracellular 

viral antigens and mixed with splenocytes from naïve mice to act as antigen presenting cells 

(APC). In this case, Tet+CD8+ T cells responded by dilution of CTV consistent with antigen 

release from a cellular viral reservoir and presentation by splenic APC (Figure 7J). Similar 

results were obtained when bone marrow-derived DCs were used as APC (Figure S7). 

Moreover, proliferation of Tet+ CD8+ T cells in these in vitro assays was antigen-specific, as 

it was not observed with lysed intestinal preps from naïve mice (Figure S7A). These data 

suggested restricted availability and/or release of viral antigen from the intestinal cellular 

reservoir despite continued replication of MNV-CR6F→Y in vivo. Taken together, our in 
vivo and in vitro experiments support a mechanism of CD8+ T cell evasion by MNV based 

on persistence in an immune-privileged enteric niche.

DISCUSSION

Two challenging aspects of NV biology have recently been appreciated. First, NVs cause 

chronic infections in some immunocompetent individuals thereby creating a potential 

reservoir for viral evolution and spread (Karst et al., 2014). Second, NVs evade adaptive 

immune responses even in previously vaccinated individuals who have robust NV-specific 

antibody titers (Atmar et al., 2011). Understanding why adaptive immunity fails to prevent 

or clear NV infections can facilitate future vaccine and public health efforts.

CD8+ T cells are critical for control of many mucosal pathogens including NVs (Chachu et 

al., 2008). However, the impact of chronic enteric infection on Trm cell responses and 

differentiation remains poorly understood. As chronic viral infections are often facilitated by 

T cell dysfunction, defining the features of T cell failure could have implications for 

therapeutic interventions and preventative vaccines. Using the MNV model we discovered 

two key features of the CD8+ T cell response and protective immunity during chronic 
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infection. First, MNV-specific CD8+ T cells retained functional responsiveness and did not 

display typical features of exhaustion. Indeed, MNV-specific CD8+ T cells maintained 

transcriptional features of activation resembling inflationary effector CD8+ T cells from 

herpesvirus infections. Second, there was a narrow window of opportunity for CD8+ T cells 

to exert protection against chronic MNV infection, leading to an apparent paradox of 

continued robust viral replication despite a largely functional antiviral CD8+ T cell response. 

Our findings point to a mechanism of largely immunologically undetectable persistence of 

an RNA virus in the intestinal tract.

While pathogen persistence is not unique to MNV, our data suggest an unusual pattern of 

immune evasion. First, the immunodominant P1519Y epitope did not revert to the less 

immunogenic 519F variant following primary and most secondary infections, suggesting 

that antigenic escape is not a major pathway facilitating MNV persistence. Second, CD8+ T 

cell exhaustion or senescence did not develop in P1519Y-specific CD8+ T cells, as these cells 

remained functional even after 30 days of chronic infection. Third, overt tolerance to MNV-

CR6F→Y also appears unlikely given the absence of Treg cell expansion and the robust 

response of P1519Y-specific CD8+ T cells when adoptively transferred to MNV-CW3WT-

infected mice.

A fourth possibility is that Tet+CD8+ T cells fail to clear MNV-CR6F→Y due to limited 

access to viral antigen during chronic infection. True CD8+ T cell ignorance is thought to 

arise from insufficient anatomical access to antigen and/or lack of costimulatory signals 

(Woodham et al., 2016). However, in the case of established chronic MNV-CR6F→Y 

infection, the effector properties of P1519-specific CD8+ T cells and their transcriptional 

similarity to inflationary MCMV-specific responses suggest that these cells do, at least 

occasionally, encounter and respond to antigen in vivo, but such interactions may be 

transient and/or inefficient.

How does a virus persistently replicating at high levels induce a CD8+ T cell transcriptional 

program normally reserved for latent pathogens? MNV cellular tropism may be at the core 

of this question and while the identity of the in vivo cellular reservoir remains poorly 

understood, our data may be relevant for elucidating the pathogenesis of this chronic enteric 

infection. Although we demonstrate a role of CD8+ T cells in preventing chronic MNV 

infection, at least in some mice, our data also show that these cells have a narrow window of 

opportunity to prevent persistence. This observation suggests a possible “switch” in tropism 

associated with the transition to viral persistence. CD300lf+ DCs can support MNV-CR6 

infection in vitro and may be necessary for at least the initial establishment of infection in 
vivo (Orchard et al., 2016). Thus, one possibility is that initial DC infection allows priming 

and early control of MNV-CR6F→Y infection by CD8+ T cells, but subsequently viral 

persistence is established in a cell type that is relatively inaccessible or unrecognizable by 

Tet+CD8+ T cells. The transcriptional program of MNV-specific CD8+ T cells from chronic 

infection does, however, implicate occasional re-stimulation with antigen in vivo perhaps 

due to low-level release from the viral reservoir. Moreover, the CD103 status of MNV-

specific CD8+ T cells in acutely resolved versus chronic infection may be relevant. For 

example, data from the Yersinia model show that the physical proximity of CD103lo Trm 

cells to antigen-presenting cells is critical for successful pathogen clearance (Bergsbaken 
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and Bevan, 2015). Whether the distinct patterns of CD103 expression on Tet+CD8+ T cells 

from resolved versus chronic MNV infection reflect differences in viral tropism and local 

immune environment, and whether modulating this axis could have antiviral effects will be 

interesting to interrogate in the future.

We have shown that a robust and functional CD8+ T cell response fails to prevent MNV 

persistence. The behavior of MNV-specific CD8+ T cells during chronic infection suggests a 

“blind spot” in their ability to perceive antigen. Whether such ignorance is the result of a 

maladaptive CD8+ T cell differentiation pattern or viral replication inside an 

immunoprivileged enteric niche remains to be determined and will have important 

implications for the design of future NV vaccines.

STAR METHODS

Contact for Reagent and Resource Sharing

Further information and requests for reagents may be directed to Vesselin Tomov 

(tomovv@pennmedicine.upenn.edu)

Experimental Model and Subject Details

Mice—Wild type C57Bl/6J female mice age 6–8 weeks were obtained from Jackson 

Laboratory, Bar Harbor, ME. MNV-free status of mice from Jackson Laboratory was 

confirmed by serology testing and qPCR. After arrival, mice were maintained MNV-free in 

designated cages with bedding and food changes done separately from other mice by the 

investigators. Periodic monitoring of naïve controls was carried out to confirm MNV-free 

status. Mice were infected by oral gavage with 1×106 PFU of MNV delivered in 200 μl 

culture medium (RPMI with 10% fetal bovine serum). For vaccinia virus boost experiments, 

mice were injected intraperitoneally with 1×106 PFU of rVV519Y in 200 μl culture medium. 

All mice were used in accordance with Institutional Animal Care and Use Committee 

guidelines for the University of Pennsylvania.

Mouse noroviruses—MNV strains CW3Y→F and CR6F→Y were generated from the 

parental strains MNV-1.CW3 (GenBank accession # EF014462) and MNV-1.CR6 (GenBank 

accession # EU004676). Overlap extension PCR was used to generate fragments containing 

the Y→F or F→Y mutations as previously described (Higuchi et al., 1988). For MNV-

CW3Y→F, primers (5′-CCCCTTGCCCCCCCAATTGGTCCC-3′) and (5′-

GGCCAATTGAAAAAGGCGAGGAACCCAACTGACGACC-3′) were used to generate 

the first fragment, and primers (5′-

CCTCGCCTTTTTCAATTGGCCTCTGTGGGAAGTTTGGC-3′) and (5′-

GGAGTGAATTCTAGCGGCCGCTAGAATTCCG-3′) were used to generate the second 

fragment. The product from the overlap extension step was cloned into the MNV-CW3 

backbone between endonuclease restriction sites ApaL1 and Not1. For MNV-CR6F→Y, 

primers (5′-CCCCTTGCCCCACCCCTAGGCCCC-3′) and (5′-

CGGAGGCCAATTGGTAGAGGCGGGGGACCCAGCTGACAACC-3′) were used to 

generate the first fragment, and primers (5′-

GCCTCTACCAATTGGCCTCCGTGGGAAGCTTGG-3′) and (5′-
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GGAGTGAATTCTAGCGGCCGCTAGAATTCCG-3′) were used to generate the second 

fragment. The product from the overlap extension step was cloned into the MNV-CR6 

backbone between endonuclease restriction sites Pvu1 and Not1. All constructs were 

sequenced to confirm successful insertion of the mutant sequences. Viral stocks of the wild 

type and mutant viruses were generated by transfecting virion-encoding plasmids into 293T 

cells and transferring supernatant onto RAW 264.7 cells as previously described (Tomov et 

al., 2013). Briefly, 293T cells were transfected using FuGENE-HD reagent (Promega, 

Madison, WI) according to the manufacturer’s protocol (FuGENE:DNA ratio of 5:2). After 

48 hours, transfected 293T cells were lysed by freeze-thaw, cellular debris was removed by 

centrifugation (10 minutes, 3,000 g, 4°C), and the supernatant was transferred onto RAW 

264.7 cells that had been plated at 2×106 cells/well in 6-well plates 24 hours earlier. After 48 

hours, RAW 264.7 cells were freeze-thawed and supernatant was purified from cellular 

debris as above. Viral stock titers were determined by plaque assay on RAW264.7 cells.

Recombinant vaccinia virus—Recombinant vaccinia virus rVV519Y was generated by 

cloning an insert containing the P1519Y sequence between restriction sites EcoR1 and Nhe1 

in vector pRB21 (Blasco and Moss, 1995). Top (5′-

AATTCATGAGTTGGGTTCCTCGCCTTTACCAATTGTAG-3′) and bottom (5′-

CTAGCTACAATTGGTAAAGGCGAGGAACCCAACTCATG-3′) oligonucleotides were 

annealed and 5′ phosphate groups were added using T4 polynucleotide kinase prior to 

cloning into the pRB21 vector. Successful insertion was confirmed by DNA sequencing. 

Recombinant vaccinia virus was produced by homologous recombination in CV-1 cells and 

triple plaque purification on 143B cells in the presence of 5mg/ml 5′-bromo-2′-

deoxyuridine as previously described and additional stocks were prepared in BSC40 cells 

(Wherry et al., 2001).

Method Details

Lymphocyte isolation and flow cytometry—Lymphocyte isolation from spleens, 

mesenteric lymph nodes, intestinal epithelium, and intestinal lamina propria was performed 

as previously described (Tomov et al., 2013). Briefly, spleens, and mesenteric lymph nodes 

were harvested in 2 ml cold (4°C), sterile culture media (RPMI with 10% fetal bovine 

serum), and homogenized through 70 μm cell strainers. In the case of spleens, red blood 

cells were lysed with ammonium-chloride-potassium (ACK) lysing buffer (Life 

Technologies, Grand Island, NY) for 2 minutes, and washed in cell culture media. Small 

intestines were dissected free of fat and Peyer’s patches, cut open longitudinally, washed 

clean of fecal material in PBS, and placed in 10 ml cold culture media. To remove epithelial 

cells, intestines were incubated in stripping buffer (PBS containing 5 mM EDTA, 1 mM 

dithiothreitol, 5% fetal bovine serum, 100 IU/ml penicillin, and 100 μg/ml streptomycin) and 

shaken at 160 rpm for 10 minutes at 37°C. After discarding the supernatant, intestines were 

incubated again in stripping buffer and shaken at 160 rpm for 20 minutes at 37°C. The 

supernatant containing intestinal epithelial cells (IEL) was passed through a 70 μm cell 

strainer, washed in culture media, re-suspended in culture media containing 40% Percol, and 

subjected to centrifugation at 600g, room temperature, for 20 minutes (without break). 

Following centrifugation, the supernatant was carefully removed and cell pellets were 

washed in culture media. After IEL stripping, lamina propria lymphocytes (LPL) were 
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isolated by incubating intestines in cell media containing 0.5 mg/ml collagenase/dispase 

(Genetech, South San Francisco, CA) and 20 μg/ml DNaseI (Sigma-Aldrich, St. Louis, MO) 

for 20 minutes at 37°C and shaking at 160 rpm. LPL were passed through a 70 μm cell 

strainer, washed, and centrifuged in 40% Percol as described above. LPL and IEL were 

isolated from the small intestine except in Figure 3B where they were isolated from the 

colon. In vitro stimulation with peptides P1519F and P1519Y was carried out for 5 hours at 

37°C with 0.4 μg/ml of peptide in the presence of GolgiStop and GolgiPlug (BD 

Biosciences, San Diego, CA) as previously described (Tomov et al., 2013). Cells were fixed 

and permeabilized using a Cytofix/Cytoperm kit (BD Biosciences, San Diego, CA) or FoxP3 

Fixation/Permeabilization kit (eBioscience, San Diego, CA) according to the manufacturer’s 

protocol. MHC Class I-peptide tetramers used in this study have been previously described 

(Tomov et al., 2013). Antibodies used are documented in the Key Resource Table. Data 

analysis was performed using FlowJo (version 10.3) software (LLC, Ashland, OR). Dead 

cells were removed by gating on a LIVE/DEAD Aqua kit (Invitrogen, Carlsbad, CA) versus 

forward scatter (FSC-H).

Adoptive transfers—Splenocytes from donor mice were harvested and isolated as 

described in the lymphocyte isolation and flow cytometry section above. Where indicated, 

enrichment for CD8+ T cells was performed using a Dynal Mouse CD8+ Negative Isolation 

Kit (Invitrogen, Carlsbad, CA) per manufacturer’s instructions. Cells were counted and 

1×108 cells were labeled in 5 ml of 15 μM Cell Trace Violet (CTV) (Invitrogen, Carlsbad, 

CA). Labeling with CTV was done at room temperature for 10 minutes in the dark. Cells 

were then washed 3 times in cold PBS with 0.1% BSA, counted, and injected i.v. into 

recipient mice as indicated.

Immune cell depletion—Depletion of CD8+ T cells was performed using anti-mouse 

CD8β (Lyt 3.2) antibody, clone 53-5.8 from Bio X Cell, Lebanon, NH. Mice received 2 

injections of 200 μg and 2 injections of 500 μg of the antibody i.v. on days -7, -5 and then -3 

and 0 relative to challenge infection. For Thy1.1 depletion, anti-mouse Thy1.1 antibody, 

clone 19E12 was used. Mice received 3 injections of 200 μg IP on days -7, -4, and -2 prior to 

adoptive transfer.

In vitro cytotoxicity—The cell killing assay was carried out as previously described 

(Odorizzi et al., 2015). Briefly, cells from MLN of naïve CD45.1 mice were labeled with 50 

nM CTV (“dim” cells) or 1 μM CTV (“bright” cells). The CTVdim cells were incubated with 

4 μg/ml of P1519Y peptide, whereas CTVbright cells were incubated with 4 μg/ml of GP33 

peptide for 2 hours at 37°C. After two hours, the pulsed cells were washed and 2×103 

CTVdim cells were mixed with 2×103 CTVbright cells. CD8+ T cells were isolated from the 

spleen of day 30 MNV-CR6F→Y and day 30 MNV-CW3WT CD45.2 mice. These CD8+ T 

cells were analyzed by flow cytometry to determine the fraction of Tet+ cells. CD8+ T cells 

from MNV-CR6F→Y or MNV-CW3WT containing the same number of Tet+ cells were 

added to wells with CTVdim and CTVbright target cells. After 18 hours at 37°C, target cells 

were analyzed by flow cytometry and the percent-specific lysis was calculated as 100 × [1 − 

(%CTVdim/%CTVbright)].
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In vitro MNV-CR6F→Y detection—Enrichment for CD8+ T cells was carried out using a 

Dynal Mouse CD8+ Negative Isolation Kit (Invitrogen, Carlsbad, CA) according to 

manufacturer instructions. Lysis of intestinal preps was carried out via freeze-thaw followed 

by centrifugation of the sample to remove cell debris. Bone marrow-derived DCs were 

isolated from the femurs of naïve mice and incubated in RPMI 1640 (Corning-Cellgro, 

Corning, NY) containing 10% fetal bovine serum, 2mM L-glutamine, 50 μM 2-

mercaptoethanol, 100 IU/ml penicillin, 100 μg/ml streptomycin, and 20 ng/ml GM-CSF for 

6 days with addition of fresh medium every 3 days.

Cell sorting for gene expression studies—Mice were infected with MNV-CW3WT or 

MNV-CR6F→Y as described above and splenocytes (SPL) and intestinal epithelial 

lymphocytes (IEL) were isolated at days 8, 15, and 30 p.i. For each time point 3 or 4 

independent biological replicates were used, where a “replicate” was defined as pooled IELs 

or SPLs from 5 individual mice. For SPL, a Dynal Mouse CD8+ Negative Isolation Kit 

(Invitrogen, Carlsbad, CA) was used to enrich for CD8+ T cells. Cells were counted and 

stained for viability, CD8, tetramer (Tet), and “dump” markers CD19, CD14, and NK1.1. All 

samples were maintained at 4°C. Sorting for live CD8+Tet+Dump− cells was done on a 

FACS Aria II cytometer (BD Immunocytometry Systems, San Jose, CA). Each biological 

replicate contained an average of 30,000 Tet+CD8+ T cells from the spleen or 10,000 Tet
+CD8+ T cells from IELs. Sample purity ranged from 92 to 99%. Sorted cells were 

resuspended in 700 μl Trizol vortexed for 1 minute, and stored at −80°C pending genomic 

analysis.

RNA from sorted cells was isolated, processed, amplified, labeled, and hybridized to 

MoGene 2.0 Micorarrays (Affymetrix, Santa Clara, CA) at the Molecular Profiling Facility 

at the University of Pennsylvania. Affymetrix Expression Console 1.4 software was used to 

process, quality control, and quantile normalize fluorescent hybridization signals with the 

Robust Multichip Averaging method as described (Doering et al., 2012). Transcripts were 

log2 normalized. Hierarchical Clustering was performed with Gene Pattern, and Gene Set 

Enrichment Analysis was performed with GSEA software (Subramanian et al., 2005).

Viral titer measurement—Viral titer in fecal pellets and tissues was measured by qPCR 

using methods and primers previously described (Tomov et al., 2013).

Quantification and Statistical Analysis

Statistical parameters including number of biological replicates and repeat experiments, data 

dispersion and precision measures (mean and SEM), and P values for statistical significance 

by Student’s T test and Fisher’s exact 2-tailed test are reported in the Figures and Figure 

Legends. Statistical analysis was performed using GraphPad Prism 7.

Data and Software Availability

Raw data files for the Gene Array expression analysis have been deposited in the NCBI 

Gene Expression Omnibus (accession # GSE101429).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• MNV-specific Trm cells during chronic infection are largely functional

• MNV Trm cells are transcriptionally similar to inflationary T cells seen in 

herpes

• MNV-specific CD8+ T cells can be protective, but this protection wanes after 

~3 days

• CD8+ T cell ignorance in chronic MNV infection is due to poor antigen 

presentation
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Figure 1. CD8+ T cell responses are generated against wild-type and mutant MNV strains
(A) Sequence of epitope P1519 in the wild-type and mutant MNV strains used in this study. 

(B) RAW-264.7 cells were infected with the indicated MNV strains at a multiplicity of 

infection (MOI) of 0.1 and viral load in the culture medium was measured by qPCR at the 

indicated time points. Representative of 3 experiments with 2 replicates per experiment. (C) 

Mice were infected orally with the indicated MNV strains and P1519-specific CD8+ T cells 

enumerated on day 8 p.i. in the indicated tissues. (D) Summary of data from (C). 

Representative of 3 experiments with 5 mice per group. (E) Percent of Tet+CD8+ T cells 

among splenic CD44hiCD62LloCD8+ T cells responding to MNV. Error bars indicate 

standard error of the mean (SEM). *Unpaired t-test (p<0.05). (F) Magnitude and (G–H) 

cytokine production and coproduction by intestinal Tet+CD8+ T cells at day 41 p.i. with 

MNV-CR6WT or MNV-CR6F→Y. Colors in (H) represent number of chemokines or 

cytokine coproduced. (I) Shedding and (J) tissue titers of wild-type and mutant viruses 

measured by qPCR. Error bars show SEM. Representative of 3 experiments with 5 mice per 

group. (K) Granzyme B expression and (L) in vitro cell killing by Tet+CD8+ T cells induced 
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by MNV-CW3WT or MNV-CR6F→Y. (M) P1519 sequences from stool of chronically 

infected mice. See also Figures S1 and S2.
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Figure 2. Distinct transcriptional profiles of MNV-specific CD8+ T cells arise in acute versus 
chronic infection
Mice were infected orally with MNV-CW3WT or MNV-CR6F→Y and at day 30 p.i. Tet
+CD8+ T cells were sorted from intestinal epithelium and analyzed by microarray. (A) 

Genes differentially expressed by at least 2-fold in Tet+CD8+ T cells from the 2 infections 

(ANOVA P value <0.05). (B–C) Enrichment of gene sets defined by Gene Ontology (GO) 

term in Tet+CD8+ T cells. Parts A–C represent 3–4 biological replicates per group, and each 

biological replicate consists of pooled cells from 5 individual mice. (D) Protein expression 

for several differentially expressed genes from (A). Representative of 2 independent 

experiments with 4 mice per group.
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Figure 3. Virus-specific Trm cells are generated following infection with acute or chronic strains 
of MNV
(A–B) Expression of CD103 and CD69 on Tet+CD8+ T cells in the small intestine and colon 

at day 30 p.i. with MNV-CW3WT or MNV-CR6F→Y. (C) Summary of data from (A). Error 

bars show SEM. (D) Expression of CD11a and CD49d on Tet+CD8+ T cells at day 30 p.i. 

with MNV-CW3WT or MNV-CR6F→Y. A–D are representative of 3 experiments with 5 

mice per group. (E) MNV-CW3WT-infected mice were injected i.v. with anti-CD8α to label 

blood accessible cells. Three minutes later, tissues were harvested and labeled (blood-

accessible) and unlabeled (tissue) CD8α+ T cells analyzed. The fraction of CD8+ T cells 

inaccessible to i.v. staining is shown in the green gates and numbers. (F) The fraction of 

CD103lo Tet+CD8+ T cells among non-circulating CD8+ T cells was enumerated. Gated on 

CD8α−(green gate) cells from (E). E–F are representative of 2 experiments with 5 mice per 

group. (G–I) Enrichment for Trm cell signature genes in Tet+CD8+ Tells from MNV-

CW3WT versus MNV-CR6F→Y infection at indicated times p.i. (J) Core enrichment genes 

for (G) and (I). (K) Viral shedding and (L) titers in mice infected with MNV-CW3WT, 

MNV-CR6F→Y, or both. (M) Mean fluorescence intensity of CD103 on Tet+ cells from the 
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LP in (K). K–M are representative of 2 experiments with 5 mice per group. *Unpaired t-test 

(p<0.05). Error bars show SEM. See also Figure S3.
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Figure 4. The transcriptional program of Tet+CD8+ T cells from chronic MNV-CR6F→Y 

infection has features of effector and inflationary T cells
Gene set enrichment of published (A) exhaustion and (B) effector CD8+ T cell signatures in 

Tet+CD8+ T cells at day 30 p.i. with MNV-CR6F→Y versus MNV-CW3WT. (C) Genes 

contributing simultaneously to enrichment of exhaustion and effector signatures from (A) 

and (B) identified by leading edge analysis. (D) Enrichment of MCMV inflationary effector 

genes in Tet+CD8+ T cells from day 30 MNV-CR6F→Y versus MNV-CW3WT infection. (E) 

MNV-CR6F→Y normalized enrichment scores for the exhaustion and effector signatures 

from (A–B) and (D). (F) Genes contributing to enrichment of both effector signatures from 

(B) and the MCMV inflationary effector signature from (D). (G) PD-1 expression and 

abundance of Tet+CD8+ T cells at day 60 p.i. with MNV-CW3WT or MNV-CR6F→Y. Part G 

is representative of 2 experiments with 5 mice per group. See also Figure S4.
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Figure 5. Tet+CD8+ T cells from chronic MNV infection retain in vivo responsiveness
(A–C) Splenic CD8+ T cells were isolated from mice chronically infected with MNV-

CR6F→Y (day 60 p.i.), labeled with CTV, and adoptively transferred into congenic recipients 

(9×106 CD8+ T cells/recipient). Recipients were (A) naïve, or (B–C) at the indicated time 

point p.i. with MNV-CW3WT or MNV-CR6F→Y. (A–C) Frequency and proliferative history 

(CTV dilution) of donor Tet+CD8+ T cells 5 days post adoptive transfer in the indicated 

tissues. (D) Summary of (A–C) showing percent Tet+ among donor CD8+ T cells. Error bars 

show SEM. Representative of 2 independent experiments with 4 mice per group. (E–G) 

Adoptive transfer was carried out as above using Thy1.1 and Thy1.2 as congenic markers. 

Splenic CD8+ T cells were isolated from mice chronically infected with MNV-CR6F→Y 

(day 30 p.i.), labeled with CTV, and adoptively transferred into congenic recipients (5×106 

CD8+ T cells/recipient). Recipients were (E) naïve, or (F–G) at the indicated time point p.i. 

with MNV-CR6F→Y or MNV-CW3WT. In (E) and (F) some recipient groups were pretreated 

with anti-Thy1.1 antibody prior to transfer. Gates in green show frequency of adoptively 

transferred donor cells. Plots in green show Tet staining and CTV dilution of transferred 

donor cells. (H) Summary of (E–G) showing percent Tet+ among donor CD8+ T cells. Error 
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bars show SEM for four mice per group. Representative of 2 independent experiments with 

4 mice per group. *Unpaired t-test (p<0.05). See also Figure S5.
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Figure 6. Pre-existing Tet+CD8+ T cells can mediate protection against chronic MNV
Mice were immunized with MNV-CW3WT or MNV-CW3Y→F and 30 days later challenged 

with MNV-CR6F→Y or MNV-CR6WT. (A) Viral shedding and (B) tissue titers were 

measured in challenged mice. (C) Summary of 3 independent experiments as outlined in 

(A–B). (D) P1519 sequences from the proximal colon of 6 immunized mice that became 

chronically infected after MNV-CR6F→Y challenge (box in (B). (E) Mice were immunized 

with MNV-CW3WT, then challenged with MNV-CR6F→Y as above. The effect of CD8+ T 

cell depletion on protection against MNV-CR6F→Y was tested on the indicated days post 

challenge by measuring viral titers in the colon. *Unpaired t-test (p<0.05). See also Figure 

S6.
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Figure 7. 
In vivo and in vitro detection of MNV by Tet+CD8+ T cells is inefficient after the initial 

week of infection.

Donor mice were infected with MNV-CW3WT and 30 days later boosted with recombinant 

vaccinia virus expressing epitope P1519Y (rVV519Y) to generate a large pool of MNV-

specific CD8+ T cells. Donor splenocytes were labeled with CTV and adoptively transferred 

into congenic recipients (10×106 splenocytes/recipient). Recipients were (A) naive or (B–F) 

at the indicated time points p.i. with MNV-CW3WT or MNV-CR6F→Y. Frequency of 

proliferated donor Tet+CD8+ T cells was analyzed 5 days post transfer in the LP. (G) 

Summary of (A–F) showing percent Tet+ among donor CD8+ T cells in the indicated tissues. 

Error bars show SEM. Representative of 2 independent experiments with 4 mice per group. 

*Unpaired t-test (p<0.05). (H–J) CD8+ T cells from day 30 MNV-CR6F→Y-infected mice 

(“Responders”) were labeled with CTV and incubated with total intestinal cells isolated 

from congenic “Presenter” mice. Presenters were (H) naïve or (I–J) chronically infected 

with MNV-CR6F→Y. In (J), intestinal preps were lysed and supplemented with APC from a 

naïve mouse. Tet+CD8+ T cell responses were assessed by CTV dilution after 72 hours. 
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Eight biological replicates were pooled to enable detection of rare Tet+ events. In each 

biological replicate, 1×106 Responders were incubated with 5×105 Presenters. In (J), the 

culture was supplemented with 1×106 naïve splenocytes. Representative of 2 independent 

experiments. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti CD8β-PerCP-Cy5.5 (clone YTS156.7.7) Biolegend Cat# 126609

Anti PD-1-PE-Cy7 (clone RMP1-30) Biolegend Cat# 109109

Anti CD103-PacificBlue (clone 2E7) Biolegend Cat# 121417

Anti CD44-BV785 (clone IM7) Biolegend Cat# 103041

Anti CD45.2-BV785 (clone 104) Biolegend Cat# 109839

Anti CXCR4-BV421(clone L276F12) Biolegend Cat# 146511

Anti Ly6c-BV785 (clone HK1.4) Biolegend Cat# 128041

Anti KLRG-1-BV605 (clone 2F1) Biolegend Cat# 138419

Anti CD62L-BV605 (clone MEI-14) Biolegend Cat# 104438

Anti TNFa-PacificBlue (clone MP6-XT22) Biolegend Cat# 506318

Anti CD107a-AF488 (clone 1D4B) Biolegend Cat# 121607

Anti CD28-PE-Cy7 (clone 37.51) Biolegend Cat# 102126

Anti CX3CR1-PE (clone SA011F11) Biolegend Cat# 149006

Anti CD11a-PE (clone 2D7) Biolegend Cat# 101008

Anti FOXP3-PE (clone MF-14) Biolegend Cat# 126404

Anti CD90.1 (Thy-1.1)-BV605 (clone OX-7) Biolegend Cat# 202537

Anti CD25-PE-Cy5 (clone PC61) Biolegend Cat# 102010

Anti CD8a-PE-eF610 (clone 53.6) eBioscience Cat# 61-0081-80

Anti CD69-PE-Cy7 (clone H1.2F3) eBioscience Cat# 25-0691-82

Anti 2B4-FITC (clone eBio244F4) eBioscience Cat# 11-2441-82

Anti CD49b-PE-Cy5 (clone DX5) eBioscience Cat# 15-5971-82

Anti CD49d-FITC (clone R1-2) eBioscience Cat# 11-0492-81

Anti CD90.2 (Thy1.2)-FITC (clone 30-H12) eBioscience Cat# 11-0903-82

Anti CD27-APC-eFluor 780 (clone LG.7F9) eBioscience Cat# 47-0271-82

Anti CD45.1-APC-R700 (clone A20) BD Biosciences Cat# 565814

Anti IFN -AlexaFluor700 (clone XMG1.2) BD Biosciences Cat# 557998

Anti GITR-FITC (clone DTA-1) BD Biosciences Cat# 558139

Anti Granzyme-B-PE (clone GB11) Invitrogen Cat# GRB04

Anti MIP-1a-APC (clone 39624) R&D Systems Cat# 1C450A

Anti IL-12Rβ2-PRCP (clone 305719) R&D Systems Cat# FAB1959C

Anti-CD8β (Lyt 3.2) (clone 53-5.8) Bio X Cell Cat # BE0223

Anti-Thy1.1 (clone 19E12) Bio X Cell Cat # BE0214

Bacterial and Virus Strains

MNV-CW3 Tomov et al., 2013 GenBank EF014462

MNV-CR6 Tomov et al., 2013 GenBank EU004676

MNV-CW3Y→F This study N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

MNV-CR6F→Y This study N/A

rVV519Y This study N/A

Biological Samples

N/A N/A N/A

Chemicals, Peptides, and Recombinant Proteins

Deoxyribonuclease I from Bovine Pancreas Sigma-Aldrich Cat # D5025

Collagenase/Dispase Roche Cat # 11097113001

DTT (dithiothreitol) Thermo Fisher Cat # R0861

RPMI 1640 Corning Cat # 15-040-CM

GemCell U.S. Origin Fetal Bovine Serum Gemini Cat # 100-500

UltraPure 0.5M EDTA, pH 8.0 Invitrogen Cat # 15575-038

Penicillin-Streptomycin (10,000 U/mL) Gibco Cat # 151401-22

ACK Lysing Buffer Thermo Fisher Cat # A1049201

L-Glutamine (200mM) Lonza Cat # 17605E

Dulbecco’s Phosphate-Buffered Saline, 1X Corning Cat # 21-031-CM

Percoll Sigma-Aldrich Cat # P4937

Critical Commercial Assays

RNeasy Mini Kit Qiagen Cat # 74106

High-Capacity cDNA Reverse Transcription Kit Applied Biosystems Cat # 4368814

TaqMan Gene Expression Master Mix Applied Biosystems Cat # 4369016

iTaq Universal SYBR Green SuperMix Bio-Rad Cat # 1725120

Fixation and Permeabilization Solution/Wash BD Biosciences Cat # 554722/554723

Brefeldin A Protein Transport Inhibitor BD Biosciences Cat # 555029

Monensin Protein Transport Inhibitor BD Biosciences Cat # 554724

Dynal CD8 Negative Isolation Kit Invitrogen Cat # 113.190

CellTrace CFSE Cell Proliferation Kit Invitrogen Cat # C34554

LIVE/DEAD Fixable Aqua Dead Stain Kit Invitrogen Cat # L34957

Fixation/Permeabilization Concentrate eBioscience Cat # 00-5123-43

Fixation/Permeabilization Diluent eBioscience Cat # 00-5223-56

MoGene 2.0 ST Microarray Affymetrix Cat # 902118

GeneChip WT PLUS Reagent Kit Affymetrix Cat # 902280

FuGENE-HD Promega Cat # E2311

Deposited Data

Raw microarray data NCBI GEO GSE101429

Experimental Models: Cell Lines

RAW 264.7 ATCC Cat # TIB-71

293T ATCC Cat # CRL-3216

143B ATCC Cat # CRL-8303

CV-1 ATCC Cat # CCL-70
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REAGENT or RESOURCE SOURCE IDENTIFIER

BSC40 ATCC Cat # CRL-2761

Experimental Models: Organisms/Strains

C57BL/6J Jackson Laboratory Stock 000664

B6.SJL-Ptprca Pepcb/BoyJ Jackson Laboratory Stock 002014

B6.Thy1.1 (B6.PL-Thy1a/Cy) Jackson Laboratory Stock 000406

Oligonucleotides

CW3 Y→F 1st fragment forward primer
CCCCTTGCCCCCCCAATTGGTCCC

This paper N/A

CW3 Y→F 1st fragment reverse primer
GGCCAATTGAAAAAGGCGAGGAACCCAACTGACGACC

This paper N/A

CW3 Y→F 2nd fragment forward primer
CCTCGCCTTTTTCAATTGGCCTCTGTGGGAAGTTTGGC

This paper N/A

CW3 Y→F 2nd fragment reverse primer
GGAGTGAATTCTAGCGGCCGCTAGAATTCCG

This paper N/A

CR6 F→Y 1st fragment forward primer
CCCCTTGCCCCACCCCTAGGCCCC

This paper N/A

CR6 F→Y 1st fragment reverse primer
CGGAGGCCAATTGGTAGAGGCGGGGGACCCAGCTGACAACC

This paper N/A

CR6 F→Y 2nd fragment forward primer
GCCTCTACCAATTGGCCTCCGTGGGAAGCTTGG

This paper N/A

CR6 F→Y 2nd fragment reverse primer
GGAGTGAATTCTAGCGGCCGCTAGAATTCCG

This paper N/A

rVV-519Y top primer
AATTCATGAGTTGGGTTCCTCGCCTTTACCAATTGTAG

This paper N/A

rVV-519Y bottom primer
CTAGCTACAATTGGTAAAGGCGAGGAACCCAACTCATG

This paper N/A

Recombinant DNA

Vaccinia virus vector pRB21 This paper N/A

Software and Algorithms

FlowJo LLC Version 10.3

GraphPad Prism GraphPad Version 7

GSEA Broad Institute Version 3.0

Transcriptome Analysis Console Affymetrix Version 3.0.0.466

Other

P1-519Y Tetramer This paper N/A

P1-519F Tetramer This paper N/A
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