76 research outputs found

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    LifeCLEF 2015: Multimedia Life Species Identification Challenges

    Get PDF
    International audienceUsing multimedia identification tools is considered as one of the most promising solutions to help bridging the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g. eBird, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipments have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching the real world’s requirements. The LifeCLEF lab proposes to evaluate these challenges around three tasks related to multimedia information retrieval and fine-grained classification problems in three living worlds. Each task is based on large and real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders in order to reflect realistic usage scenarios. This paper presents more particularly the 2014 edition of LifeCLEF, i.e. the pilot one. For each of the three tasks, we report the methodology and the datasets as well as the official results and the main outcomes

    On the use of parataxonomy in biodiversity monitoring: a case study on wild flora

    Get PDF
    International audienceMonitoring programs that assess species-richness and turnover are now regarded as essential to document biodiversity loss worldwide. Implementation of such programs is impeded by a general decrease in the number of skilled naturalists. Here we studied how morphotypes, instead of species, might be used by unskilled participants (referred to as “volunteers”) to survey common plant communities. Our main questions were: (1) Can morphotypes be used as a robust estimator of species-richness (alpha-diversity) and assemblage turnover (Beta-diversity)? and (2) What is the robustness (reproducibility and repeatability) of such methods? Double inventories were performed on 150 plots in arable Weld margins, one by a non-expert using morphotypes, the other by a taxonomist using species. To test the robustness of morphotype identiWcation among participants, 20 additional plots were surveyed by eight volunteers using the same protocol. We showed that (1) the number of morphotypes identiWed by unskilled volunteers in a plot was always strongly correlated with species-richness. (2) Morphotypes were sensitive to diVerences among habitats but were less accurate than species to detect these diVerences. (3) Morphotype identiWcation varied signiWcantly within and between volunteers. Due to this lack of repeatability and reproducibility, parataxonomy cannot be considered a good surrogate for taxonomy. Nevertheless, assuming that morphotypes are identiWed with standardized methods, and that results are used only to evaluate gross species-richness but not species turnover, parataxonomy might be a valuable tool for rapid biodiversity assessment of common wild flora

    Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries.</p> <p>Results</p> <p>We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter.</p> <p>Conclusion</p> <p>Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used.</p

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Mitochondrial Cox1 Sequence Data Reliably Uncover Patterns of Insect Diversity But Suffer from High Lineage-Idiosyncratic Error Rates

    Get PDF
    The demand for scientific biodiversity data is increasing, but taxonomic expertise is often limited or not available. DNA sequencing is a potential remedy to overcome this taxonomic impediment. Mitochondrial DNA is most commonly used, e.g., for species identification ("DNA barcoding"). Here, we present the first study in arthropods based on a near-complete species sampling of a family-level taxon from the entire Australian region. We aimed to assess how reliably mtDNA data can capture species diversity when many sister species pairs are included. Then, we contrasted phylogenetic subsampling with the hitherto more commonly applied geographical subsampling, where sister species are not necessarily captured. We sequenced 800 bp cox1 for 1,439 individuals including 260 Australian species (78% species coverage). We used clustering with thresholds of 1 to 10% and general mixed Yule Coalescent (GMYC) analysis for the estimation of species richness. The performance metrics used were taxonomic accuracy and agreement between the morphological and molecular species richness estimation. Clustering (at the 3% level) and GMYC reliably estimated species diversity for single or multiple geographic regions, with an error for larger clades of lower than 10%, thus outperforming parataxonomy. However, the rates of error were higher for some individual genera, with values of up to 45% when very recent species formed nonmonophyletic clusters. Taxonomic accuracy was always lower, with error rates above 20% and a larger variation at the genus level (0 to 70%). Sørensen similarity indices calculated for morphospecies, 3% clusters and GMYC entities for different pairs of localities was consistent among methods and showed expected decrease over distance. Cox1 sequence data are a powerful tool for large-scale species richness estimation, with a great potential for use in ecology and β-diversity studies and for setting conservation priorities. However, error rates can be high in individual lineages

    Museum and herbarium collections for biodiversity research in Angola

    Get PDF
    The importance of museum and herbarium collections is especially great in biodiverse countries such as Angola, an importance as great as the challenges facing the effective and sustained management of such facilities. The interface that Angola represents between tropical humid climates and semi-desert and desert regions creates conditions for diverse habitats with many rare and endemic species. Museum and herbarium collections are essential foundations for scientific studies, providing references for identifying the components of this diversity, as well as serving as repositories of material for future study. In this review we summarise the history and current status of museum and herbarium collections in Angola and of information on the specimens from Angola in foreign collections. Finally, we provide examples of the uses of museum and herbarium collections, as well as a roadmap towards strengthening the role of collections in biodiversity knowledge generationinfo:eu-repo/semantics/publishedVersio

    The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances

    Get PDF
    BACKGROUND:The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. METHODOLOGY/PRINCIPAL FINDINGS:Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. CONCLUSIONS/SIGNIFICANCE:The Convention on International Trade Endangered Species (CITES) requires that listed species must be identifiable in trade. This research fulfills this requirement for tuna, and supports the nomination of northern bluefin tuna for CITES listing in 2010

    Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life

    Get PDF
    L). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta.Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses.Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages
    corecore