239 research outputs found

    Thin Films of Aromatic Polyazomethines

    Get PDF

    Plantar fascia segmentation and thickness estimation in ultrasound images

    Get PDF
    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness

    Digital Image Sensor-Based Assessment of the Status of Oat (Avena sativa L.) Crops after Frost Damage

    Get PDF
    The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu’s method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production

    Perception-based fuzzy partitions for visual texture modelling

    Get PDF
    Visual textures in images are usually described by humans using linguistic terms related to their perceptual properties, like “very coarse”, “low directional”, or “high contrasted”. Computational models with the ability of providing a perceptual texture characterization on the basis of these terms can be very useful in tasks like semantic description of images, content-based image retrieval using linguistic queries, or expert systems design based on low level visual features. In this paper, we address the problem of simulating the human perception of texture, obtaining linguistic labels to describe it in natural language. For this modeling, fuzzy partitions defined on the domain of some of the most representative measures of each property are employed. In order to define the fuzzy partitions, the number of linguistic labels and the parameters of the membership functions are calculated taking into account the relationship between the computational values given by the measures and the human perception of the corresponding property. The performance of each fuzzy partition is analyzed and tested using the human assessments, and a ranking of measures is obtained according to their ability to represent the perception of the property, allowing to identify the most suitable measure
    corecore