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1 Introduction

References to Proposition 1 and Theorem 1 refer to items in the article Locally stationary
wavelet fields with application to the modelling and analysis of image texture by Eckley,
Nason and Treloar (2009) (henceforth ENT).

2 Proofs

Proposition 1. Let CR be the autocovariance of a LS2W process, Xr, and C as in
Definition 6 of ENT. Then as R,S →∞

|CR(z, τ)− C(z, τ)| = O
{

min(R,S)−1
}
, (1)

uniformly in τ ∈ Z2 and z ∈ (0, 1)2.

Proof of Proposition 1

Using the LS2W process representation in equation 5 of ENT,

CR(z, τ ) = Cov(X[zR], X[zR]+τ )

= E
(
(X[zR] − µ[zR])(X[zR]+τ − µ[zR]+τ )

)
.
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However, by Assumption 1, E(Xr) = 0 for all r. Hence,

CR(z, τ ) = E
(
X[zR]X[zR]+τ

)
= E

∑
l

∑
j

∑
u

wlj,uψ
l
j,u([zR])ξlj,u

∑
l0

∑
j0

∑
u0

wl0j0,u0
ψl0j0,u0

([zR] + τ )ξl0j0,u0


= E

∑
l

∑
j

∑
u

∑
l0

∑
j0

∑
u0

wlj,uw
l0
j0,u0

ψlj,u([zR])ψl0j0,u0
([zR] + τ )ξlj,uξ

l0
j0,u0


=

∑
l

∑
j

∑
u

∑
l0

∑
j0

∑
u0

wlj,uw
l0
j,u0

ψlj,u([zR])ψl0j0,u0
([zR] + τ )E(ξlj,uξ

l0
j0,u0

)

for the wlj,u and the ψlj,u are deterministic. Moreover, since

Cov(ξlj,u, ξ
l0
j0,u0

) = E(ξlj,uξ
l0
j0,u0

) = δj,j0δl,l0δu,u0 ,

it follows that

CR(z, τ ) =
∑
l

∑
j

∑
u

|wlj,u|2ψlj,u([zR])ψlj,u([zR] + τ ), next let u = p + [zR]

=
∑
l

∑
j

∑
u

|wlj,p+[zR]|
2ψlj,p+[zR]([zR])ψlj,p+[zR]([zR] + τ )

=
∑
l

∑
j

∑
u

|wlj,p+[zR]|
2ψj,p(0)ψlj,p(τ ).

We now derive two limit results which are required to complete this proof.

Limit result 1 Using the definition of the local wavelet spectrum (ENT: Definition 5), it
is easily shown that Slj(z) = |W l

j(z)|2 for all z ∈ (0, 1)2. Furthermore, Assumption 2 of
ENT states that

Slj(z) = lim
R,S→∞

|wlj,[zR]|
2 for z ∈ (0, 1)2.

By Assumption 2,

sup
u

∣∣∣wlj,u −W l
j

( u
R

)∣∣∣ ≤ C lj
max{R,S}

.

The triangle inequality implies that

sup
u

∣∣∣wlj,u∣∣∣− ∣∣∣W l
j

( u
R

)∣∣∣ ≤ C lj
max{R,S}

⇒
∣∣∣wlj,u∣∣∣ =

∣∣∣W l
j

( u
R

)∣∣∣+O

(
C lj

max{R,S}

)

⇒
∣∣∣wlj,u∣∣∣2 =

∣∣∣W l
j

( u
R

)∣∣∣2 +O

(
C lj

max{R,S}

)
as
∑

j |W l
j(z)|2 <∞.
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Hence, setting z = u/R, we obtain∣∣∣|wlj,u|2 − Slj(z)
∣∣∣ = O

(
C lj

max{R,S}

)
. (2)

Limit result 2 Recall that the W l
j(z) are assumed to be Lipschitz continuous functions

(with respect to the L1-norm). Hence,

‖W l
j(z + τ/R)−W l

j(z)‖ ≤ Llj‖(z + τ/R)− z‖ where τ/R = (τ1/R, τ2/S)

⇒ |W l
j(z + τ/R)−W l

j(z)| ≤ Llj‖τ/R‖1
⇒ |W l

j(z + τ/R)| − |W l
j(z)| ≤ Llj‖τ/R‖1 by the triangle inequality

⇒ |W l
j(z + τ/R)| = |W l

j(z)|+O
(
Llj‖τ/R‖1

)
⇒ |W l

j(z + τ/R)|2 = |W l
j(z)|2 +O

(
Llj‖τ/R‖1

)
for
∑

j

∑
l |W l

j(z)|2 <∞ and the Llj are uniformly bounded in (j, l). Hence∣∣∣|W l
j(z + τ/R)|2 − |W l

j(z)|2
∣∣∣ = O

(
Llj

(
|τ1|
R

+
|τ2|
S

))
⇒
∣∣∣|W l

j(z + τ/R)|2 − |W l
j(z)|2

∣∣∣ = O

(
Llj

(
|τ1|+ |τ2|
min{R,S}

))
.

Thus, ∣∣∣Slj(z + τ/R)2 − Slj(z)2
∣∣∣ = O

(
Llj

(
|τ1|+ |τ2|
min{R,S}

))
. (3)

With the above limit results in place, we are now in a position to consider the asymptotic
convergence of CR(z, τ ) to C(z, τ ):

|CR(z, τ )− C(z, τ )| =

∣∣∣∣∣∣
∑
l

∑
j

∑
u

|wlj,u+zR|2ψlj,u(0)ψlj,u(τ )−
∑
l

∑
j

Slj(z)Ψl
j(τ )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l

∑
j

∑
u

(
|wlj,u+zR|2 − Slj

( u
R

+ z
))

ψlj,u(0)ψlj,u(τ )

+
∑
l

∑
j

∑
u

Slj

( u
R

+ z
)
ψlj,u(0)ψlj,u(τ )−

∑
l,j

Slj(z)Ψl
j(τ )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
l

∑
j

∑
u

(
|wlj,u+zR|2 − Slj

( u
R

+ z
))

ψlj,u(0)ψlj,u(τ )

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
l

∑
j

∑
u

Slj

( u
R

+ z
)
ψlj,u(0)ψlj,u(τ )−

∑
l,j

Slj(z)Ψl
j(τ )

∣∣∣∣∣∣ .
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However Ψl
j(τ ) =

∑
u ψ

l
j,u(0)ψlj,u(τ ). Hence, using Limit Result 1

|CR(z, τ )− C(z, τ )| ≤
∑
l

∑
j

∑
u

C lj
max{R,S}

∣∣∣ψlj,u(0)ψlj,u(τ )
∣∣∣

+

∣∣∣∣∣∣
∑
l

∑
j

∑
u

Slj

( u
R

+ z
)
ψlj,u(0)ψlj,u(τ )

−
∑
l

∑
j

Slj(z)
∑
u

ψlj,u(0)ψlj,u(τ )

∣∣∣∣∣∣
≤

∑
l

∑
j

∑
u

C lj
max{R,S}

∣∣∣ψlj,u(0)ψlj,u(τ )
∣∣∣

+
∑
l

∑
j

∑
u

∣∣∣Slj ( uR + z
)
− Slj(z)

∣∣∣ ∣∣∣ψlj,u(0)ψlj,u(τ )
∣∣∣ .

Using Limit Result 2, in conjunction with the modelling assumptions made in Definition
2 of ENT that the Lipschitz constants Llj and W l

j are uniformly bounded in j, l and that∑
l

∑
j 22jLlj <∞ and

∑
l

∑
j C

l
j <∞, we obtain

|CR(z, τ )− C(z, τ )| =
∑
l

∑
j

∑
u

C lj
max{R,S}

∣∣∣ψlj,u(0)ψlj,u(τ )
∣∣∣

+
∑
j

∑
l

∑
u

Llj
|u1|+ |u2|
min{R,S}

∣∣∣ψlj,u(0)ψlj,u(τ )
∣∣∣

≤
∑
l

∑
j

∑
u

[
C lj + Llj(|u1|+ |u2|)

min{R,S}

] ∣∣∣ψlj,u(0)ψlj,u(τ )
∣∣∣

+ O

(
1

min{R,S}

)
.

Theorem 1. For any compactly supported Daubechies wavelet, the family of discrete 2D
autocorrelation wavelets {Ψη} is linearly independent. Hence,

1. the operator A is invertible (since all of its eigenvalues are positive) and for each
J ∈ N, the norm ||A−1J || is bounded above.

2. the LWS is uniquely defined given the corresponding LS2W process.

4



Proof of Theorem 1

The structure of the proof for the theorem is similar to that of the one dimensional case,
considered by NvSK, although added care is required when dealing with the zeros ofm0(ω)
and m1(ω). This is due to the addition of directionality, l ∈ {h, v, d}, as well as scale, j,
within the decomposition.

Suppose, by way of contradiction, that there exist two spectral representations of the
same LS2W process. In other words, assume that there exist w(1)

η,u and w(2)
η,u such that∣∣∣w(i)

η,u −W (i)
η

( u
R

)∣∣∣ = O

(
1

max{R,S}

)
for i = 1, 2

which also possess the same covariance structure. In other words

C(z, τ ) =
∑
η

S(1)
η (z)Ψη(τ ) =

∑
η

S(2)
η (z)Ψη(τ )

where C is defined in equation 14 of ENT ∀z ∈ (0, 1)2, ∀τ = Z2 and Siη(z) =
∣∣∣W (i)

η (z)
∣∣∣2

for i = 1, 2.

Setting ∆η(z) ≡ S
(1)
η (z) − S(2)

η (z) it therefore follows that to prove this result, we must
show that

0 =
∑
η

∆η(z)Ψη(τ ) ∀z ∈ (0, 1)2, ∀τ ∈ Z2,

⇒ ∆η(z) = 0 ∀η,∀z ∈ (0, 1)2.

What we actually show is that

0 =
∑
η

∆̃η(z)Ψη(τ ) ∀z ∈ (0, 1)2,∀τ ∈ Z2,

implies ∆̃η(z) = 0, ∀η ≥ 1, ∀z ∈ (0, 1)2. Here ∆̃η(z) = 2−2j(η)∆η(z), where
j(η) ≡ η − bη−1J cJ for η = 1, . . . , 3J . b·c denotes the floor function. Thus j(η) simply
refers to scale.

Before proving the theorem we state the following proposition.

Proposition 2. Let ψ̂j(ω) and φ̂j(ω) be the Fourier transforms of {ψj,k} and {φj,k}
respectively. Then

1. ψ̂j(ω) =
∑

k ψj,ke
−iωk = 2j/2m1(2

j−1ω)
∏j−2
`=0m0(2

`ω),

2. φ̂j(ω) =
∑

k φj,ke
−iωk = 2j/2

∏j−1
`=0m0(2

`ω),

where m0(ω) and m1(ω) are the usual frequency response functions of the low- and high-
pass filters of Daubechies compactly supported wavelets.
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Proof of Proposition 2

Part (i) was shown in NvSK, part (ii) can be shown similarly: both are simple consequences
of the scaling relations between wavelets and father wavelets.

To start, recall that the operator A = (Aη,ν)η,ν≥1 is defined by Aη,ν =
∑

τ Ψη(τ )Ψν(τ ).
However, by Parseval’s relation

Aη,ν =
∑
τ

Ψη(τ )Ψν(τ ) =

(
1

2π

)2 ∫ ∫
Ψ̂η(ω)Ψ̂ν(ω) dω, (4)

where Ψ̂η(ω) takes one of the following forms:

|Ψ̂v
j (ω)|2 = 22j |m1(2

j−1ω1)|2|m0(2
j−1ω2)|2

∏j−2
p=0 |m0(2

pw1)m0(2
pw2)|2

|Ψ̂h
j (ω)|2 = 22j |m0(2

j−1ω1)|2|m1(2
j−1ω2)|2

∏j−2
p=0 |m0(2

pw1)m0(2
pw2)|2

|Ψ̂d
j (ω)|2 = 22j |m1(2

j−1ω1)|2|m1(2
j−1ω2)|2

∏j−2
p=0 |m0(2

pw1)m0(2
pw2)|2

The above follows as a consequence of the Fourier properties of discrete father wavelet
filters and discrete wavelets (see for example Lemma 3.1 of Eckley (2001), the separability

of the 2D wavelets and the result that Ψ̂l
j(ω) =

∣∣∣ψ̂lj(ω)
∣∣∣2. Thus, 0 =

∑
η ∆̃(z)Ψη(τ )

implies that

⇒ 0 =
∑
η

∆̃η(z)Ψη(τ )
∑
ν

∆̃νΨν(τ ), ∀z ∈ (0, 1)2, ∀τ ∈ Z2.

Hence 0 =
∑

η

∑
ν ∆̃η(z)∆̃ν(z)

∑
τ Ψη(τ )Ψν(τ ).

Applying Parseval’s relation, (4), we obtain

0 =
∑
η

∑
ν

∆̃η(z)∆̃ν(z)

(
1

2π

)2 ∫ ∫
Ψ̂η(ω)Ψ̂ν(ω) dω

=

∫ ∫
dω

(∑
η

∆̃η(z)Ψ̂η(ω)

)2

. (5)

By Definition 4 of ENT, Sη(z) is positive, hence |Sη(z)| = Sη(z). Furthermore, it is
easily shown that

∑
η Sη(z) < ∞ (see Eckley (Property 3.1, 2001) for details), uniformly

in z. Thus,
∑

η |∆η(z)| < ∞ and hence
∑

η 22j(η)|∆̃η(z)| < ∞. We can infer
that

∑
η ∆̃η(z)Ψ̂η(ω) is a continuous function for ω ∈ [−π, π]2 because 2−2j(η)Ψ̂η(ω)
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is continuous in this domain (it is simply a trigonometric polynomial in two variables,
uniformly bounded above by 1). Hence, (5) if and only if

0 =
∑
η

∆̃η(z)Ψ̂η(ω), ∀ω ∈ [−π, π]2, ∀z ∈ (0, 1)2.

All that remains now is to demonstrate the pointwise implication of ∆̃η(z) = 0 ∀η ≥
1, ∀z ∈ (0, 1)2. To achieve this, we use continuity arguments and the insertion of the zeros
of |m0(2

lω)|2 and |m1(2
lω)|2.

We start by fixing z ∈ (0, 1)2 and set ∆̃η = ∆̃η(z) at this fixed point z. Then,

0 =
∑
η

∆̃ηΨ̂η(ω)

=
J∑
η=1

∆̃ηΨ̂η(ω) +
2J∑

η=J+1

∆̃ηΨ̂η(ω) +
3J∑

η=2J+1

∆̃ηΨ̂η(ω)

=
J∑
η=1

∆̃η2
2j |m1(2

j−1ω1)|2|m0(2
j−1ω2)|2

j−2∏
l=0

|m0(2
lw1)m0(2

lw2)|2

+

2J∑
η=J+1

∆̃η2
2j |m0(2

j−1ω1)|2|m1(2
j−1ω2)|2

j−2∏
l=0

|m0(2
lw1)m0(2

lw2)|2 (6)

+
3J∑

η=2J+1

∆̃η2
2j |m1(2

j−1ω1)|2|m1(2
j−1ω2)|2

j−2∏
l=0

|m0(2
lw1)m0(2

lw2)|2.

From Daubechies (1992, Chapter 5) we know that m0 is a 2π-periodic function which is
such that |m0(ξ)|2 + |m0(ξ + π)|2 = 1 and,

|m0(π)|2 = 0. (7)

Thus, |m0(0)|2 = 1. Recall also that |m1(ω)|2 = 1− |m0(ω)|2 for Daubechies compactly
supported wavelets.

To show that ∆̃1, ∆̃J+1 and ∆̃2J+1 are all zero, consider the following: Let ω1 = π and ω2

vary. Then by the construction of Ψ̂η(ω1, ω2) and using (7) it follows that Ψ̂η(π, ω2) = 0
for η = 2, 3, . . . , J, J + 1, . . . , 2J, 2J + 2, . . . , 3J . However since |m1(π)|2 = 1, equation
6 simplifies to

0 = ∆̃14|m1(π)|2|m0(ω2)|2 + ∆̃2J+14|m1(π)|2|m1(ω2)|2

= ∆̃1|m0(ω2)|2 + ∆̃2J+1|m1(ω2)|2, ∀ω2 ∈ [−π, π] (8)

Now suppose, without loss of generality, that ω2 = 0. Then |m1(0)|2 = 1− |m0(0)|2 = 0.
Hence, 0 = ∆̃1|m0(0)|2 + ∆̃2J+1|m1(0)|2 = ∆̃1|m0(0)|2. In other words, ∆̃1 = 0.
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To show that ∆̃2J+1 is zero, reconsider (8):

0 = ∆̃1|m1(π)|2|m0(ω2)|2 + ∆̃2J+1|m1(π)|2|m1(ω2)|2

= ∆̃2J+1|m1(π)|2|m1(ω2)|2, as ∆̃1 is zero

= ∆̃2J+1|m1(ω2)|2 ∀ω2 ∈ [−π, π].

Setting ω2 = π, we obtain, 0 = ∆̃2J+1|m1(π)|2,

=⇒ ∆̃2J+1 = 0. (9)

To conclude this part of the proof, it remains to show that ∆̃J+1 = 0. To this end,
reconsider (6) setting ω2 = π and letting ω1 vary. Then, as |m0(π)|2 = 0, it follows
that Ψ̂η(ω1, π) = 0 for all η except η = J + 1 and 2J + 1. However, we have already
shown that ∆̃2J+1 = 0. Thus (6) simplifies to 0 = ∆̃J+1|m0(ω1)|2 ∀ω1 ∈ [−π, π]. Setting
ω1 = 0 (⇒ |m0(w1)|2 = 1), we find that ∆̃J+1 = 0.

We have therefore shown that ∆̃1, ∆̃J+1 and ∆̃2J+1 = 0. Thus (6) simplifies to

0 = |m0(w1)m0(w2)|2


J∑
η=2

∆̃η2
2j |m1(2

j−1ω1)|2|m0(2
j−1ω2)|2

j−2∏
l=1

|m0(2
lw1)m0(2

lw2)|2

+

2J∑
η=J+2

∆̃η2
2j |m0(2

j−1ω1)|2|m1(2
j−1ω2)|2

j−2∏
l=1

|m0(2
lw1)m0(2

lw2)|2 (10)

+

3J∑
η=2J+2

∆̃η2
2j |m1(2

j−1ω1)|2|m1(2
j−1ω2)|2

j−2∏
l=1

|m0(2
lw1)m0(2

lw2)|2
 .

As |m0(ω)|2 and |m1(ω)|2 are analytic and m0(ω),m1(ω), as trigonometric polynomials,
have finitely many zeros, it follows that the (continuous) function in the braces must vanish
identically. Setting ω1 = π/2 and letting ω2 vary, we find that |m0(2w1)|2 = |m0(π)|2 = 0
and |m1(2ω1)|2 = 1. Hence (10) reduces to

0 = ∆̃22
4|m1(π)|2|m0(2ω2)|2 + ∆̃2J+22

4|m1(π)|2|m1(2ω2)|2

0 = ∆̃2|m0(2ω2)|2 + ∆̃2J+2|m1(2ω2)|2 ∀ω2 ∈ [−π, π]. (11)

Without loss of generality, let ω2 = 0. Then as |m1(0)|2 = 0, the above simplifies
to ∆̃2 = 0. Thus the expression in (11), where ω2 can take any value, simplifies to
0 = ∆̃2J+2|m1(2ω2)|2. Setting ω2 = π/2, we obtain 0 = ∆̃2J+2|m1(π)|2 = ∆̃2J+2.

Finally to show that ∆̃J+2 = 0, reconsider (10), this time allowing ω1 to vary and setting
ω2 = π/2.The expression reduces to

0 = ∆̃J+22
4|m0(2ω1)|2|m1(π)|2 + ∆̃2J+22

4|m1(2ω1)|2|m1(π)|2 but ∆̃2J+2 = 0,

= ∆̃J+2|m)(2ω1)|2 ∀ω1 ∈ [−π, π].
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Setting ω1 = 0 it follows that
∆̃J+2 = 0.

Continuing with this scheme for j(η) = 3, 4, 5, . . . leads to the result that

∆̃η(z) = 0 ∀η,∀z ∈ (0, 1)2.

Hence the LWS are uniquely defined given the corresponding LS2W process. Furthermore,
since we have shown that 0 =

∑
η ∆̃η(z)Ψη(τ ) if, and only if ∆̃j(z) = 0, we have

that {Ψη(τ )}∞η=1 are linearly independent. Moreover, since A is the Inner Product (or
Gram) matrix of the Ψη, A is clearly symmetric and also positive definite. Consequently
the eigenvalues of A are positive.

Corollary 1. The inverse formula of equation 14 of ENT is

Slj(z) =
∑
η1

A−1η,η1

∑
τ

C(z, τ)Ψη1(τ). (12)

Proof of Corollary 1

This proof is identical to that of the one-dimensional case considered by Nason et al.
(Proposition 2, 2000). Consider,∑

η1

A−1η,η1

∑
τ

C(z, τ )Ψη(τ )

By definition, C(z, τ ) =
∑

ν SνΨν(τ ). Hence

∑
η1

A−1η,η1

∑
τ

C(z, τ )Ψη(τ ) =
∑
η1

A−1η,η1

∑
τ

{∑
ν

Sν(z)Ψν(τ )

}
Ψη(τ )

=
∑
η1

A−1η,η1

∑
ν

Sν(z)
∑
τ

Ψν(τ )Ψη1(τ ).

The order of the summations may be changed above for
∑

η Sη(z) <∞ ∀z whilst the sum
over τ is finite. By definition

∑
τ Ψν(τ )Ψη1(τ ) = Aν,η1 = Aν,η1 . Hence,∑

η1

A−1η,η1

∑
τ

C(z, τ )Ψη(τ ) =
∑
η1

A−1η,η1

∑
ν

Sν(z)Aν,η1

=
∑
ν

Sν(z)
∑
η1

A−1η,η1Aη1,ν

=
∑
ν

Sν(z)δη,ν

= Sη(z).

9



Theorem 2. Let z = (z1, z2), R = (R,S) and [zR] = ([z1R], [z2S]) where R = 2J , S =
2K for some J,K ∈ N. Further, assume that the {ξη,r} are Gaussian. Then,

E
(
Iη,[zR]

)
=
∑
η1

Aηη1Sη1(z) +O

(
1

min{R,S}

)
. (13)

Proof of Theorem 2

Let p=[zR]. By definition,

E(I lj,p) = E
[
(dlj,p)2

]
= E

(∑
r

Xrψ
l
j,p(r)

)2
 .

As {Xr} is assumed to be a LS2W process, we obtain

E(I lj,p) = E

∑
r

∑
l,j,u

wlj,uψ
l
j,u(r)ξlj,u

ψlj,p(r)

2
= E

∑
r1

∑
l1,j1,u1

wl1j1,u1
ψlj1,u1

(r1)ξ
l1
j1,u1

ψlj,p(r1)

∑
r2

∑
l2,j2,u2

wl2j2,u2
ψlj2,u2

(r2)ξ
l2
j2,u2

ψlj,p(r2)


=

∑
r1,r2

∑
l1,l2

∑
j1,j2

∑
u1,u2

wl1j1,u1
wl2j2,u2

ψlj1,u1
(r1)ψ

l
j2,u2

(r2)ψ
l
j,p(r1)ψ

l
j,p(r2)E(ξl1j1,u1

ξl2j2,u2
).

By the orthonormality of the increment sequence and Assumption 1, it follows that

Cov(ξl1j1,u1
ξl2j2,u2

) = E(ξl1j1,u1
ξl2j2,u2

)

= δj1,j2δl1,l2δu1,u2 .

Hence,

E(I lj,p) =
∑
l1,j1,u

(wl1j1,u)2
∑
r1

ψl1j1,u(r1)ψ
l
j,p(r1)

∑
r2

ψl1j1,u(r2)ψ
l
j,p(r2). (14)

Upon making the substitution u = x + p we obtain:

E(I lj,p) =
∑
l1,j1,x

(wl1j1,x+p)2

{∑
r

ψl1j1,x+p(r)ψlj,p(r)

}2

=
∑
l1,j1,x

(wl1j1,x+p)2

{∑
r

ψl1j1,x+p−rψ
l
j,p−r

}2

. (15)

10



As the sum over x ranges over {x = (x1, x2) : x1.x2 ∈ Z}, it follows that p in the final
summation of equation (15) becomes redundant. Hence,

E(I lj,p) =
∑
l1

∑
j1

∑
x

(wl1j1,x+p)2

{∑
r

ψl1j1,x−rψ
l
j,−r

}2

.

It is easily shown that ∣∣∣|wlj,[zR]+x|
2 − Slj

(
z +

x

R

)∣∣∣ ≤ C lj
max{R,S}

.

See the proof of Proposition 1 for further details. Hence

|wlj,[zR]+x|
2 − Slj

(
z +

x

R

)
≤

C lj
max{R,S}

.

In other words,

|wl1j1,x+p|
2 = Sl1j1

(
x + p

R

)
+O

(
C l1j1

max{R,S}

)
.

Thus,

E(I lj,p) =
∑
l1

∑
j1

∑
x

(
Sl1j1

(
x + p

R

)
+O

(
C l1j1

max{R,S}

)){∑
r

ψl1j1,x−rψ
l
j,−r

}2

=
∑
l1

∑
j1

∑
x

Sl1j1

(
x + p

R

){∑
r

ψl1j1,x−rψ
l
j,−r

}2

+O

(
1

max{R,S}

)
.

Aside: The remainder term can be brought out because

1. the number of terms in the wavelet product
{∑

r ψ
l1
j1,x−rψ

l
j,−r

}
is finite and bounded

as a function of x due to j being fixed and the fact that discrete wavelets have compact
support.

2. and as
∑

l

∑
j C

l
j <∞.

Moreover, as we show in the proof of Proposition 1, if we set z = (z1, z2) and τ = (τ1, τ2),
then ∣∣∣Slj(z1 + τ1/R, z2 + τ2/S)− Slj(z1, z2)

∣∣∣ = O

(
Llj

(
|τ1|
R

+
|τ2|
S

))
.

Thus,

Slj(z1 + τ1/R, z2 + τ2/S) = Slj(z1, z2) +O

(
Llj
|τ1|+ |τ2|
min{R,S}

)
. (16)

11



Incorporating this Lipschitz property of the {Slj}, (16), we obtain

E(I lj,p) =
∑
l1

∑
j1

∑
x

(
Sl1j1

( p
R

)
+O

(
Llj‖x‖1

min{R,S}

)){∑
r

ψl1j1,x−rψ
l
j,−r

}2

+O

(
1

max{R,S}

)
∑
l1

∑
j1

∑
x

Sl1j1 ( pR)
{∑

r

ψl1j1,x−rψ
l
j,−r

}2
+O

(
1

min{R,S}

)
,

again due to
{∑

r ψ
l1
j1,x−rψ

l
j,−r

}
being finite and the summability of the Lipschitz constants

Llj .

Expanding the squared wavelet product term yields

E(I lj,p) =
∑
l1

∑
j1

∑
x

Sl1j1

( p
R

){∑
r1

ψl1j1,x−r1ψ
l
j,−r1

∑
r2

ψl1j1,x−r2ψ
l
j,−r2

}
+O

(
1

min{R,S}

)
.

Upon making the substitution s = r2 − r1 we obtain

E(I lj,p) =
∑
l1

∑
j1

∑
x

Sl1j1

( p
R

){∑
r1

ψl1j1,x−r1ψ
l
j,−r1

∑
s

ψl1j1,x−s−r1ψ
l
j,−s−r1

}

+O

(
1

min{R,S}

)
=

∑
l1

∑
j1

Sl1j1

( p
R

)∑
r1

∑
s

ψlj,−r1ψ
l
j,−s−r1

∑
x

ψl1j1,x−r1ψ
l1
j1,x−r1−s

+O

(
1

min{R,S}

)
.

By recognition, this last summation is simply the discrete a.c. wavelet, Ψl1
j1

(s). Thus,

E(I lj,p) =
∑
l1

∑
j1

Sl1j1

( p
R

)∑
s

Ψl1
j1

(s)
∑
−r1

ψlj,r1ψ
l
j,−s−r1 +O

(
1

min{R,S}

)

=
∑
l1

∑
j1

Sl1j1

( p
R

)∑
s

Ψl1
j1

(s)Ψl
j(s) +O

(
1

min{R,S}

)
. (17)

Setting η = (j, l) and η1 = (j1, l1), and recalling that
∑

s Ψη1(s)Ψη(s) = Aη,η1 , equation
(17) reduces to:

E(Iη,p) =
∑
η1

Aη,η1Sη1

( p
R

)
+O

(
1

min{R,S}

)
,

as required.
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Theorem 3. Assume that the {ξη,r} are again Gaussian. Then the covariance between I l1j1,p
and I l2j2,q may be expressed as follows:

Cov(I l1j1,pI
l2
j2,q

) = 2

∑
l0

∑
j0

∑
u0

(wl0j0,u0
)2αl1,l0j1,j0

(p,u0)α
l2,l0
j2,j0

(q,u0)


2

.

Thus the correlation between these quantities decreases with increasing distance between
location p at scale-direction (j1, l1) and the location q at (j2, l2). In particular, when
j1 = j2, the covariance is zero when ‖p − q‖ exceeds the overlap of the corresponding
wavelets support. Moreover

Var(I lj,p) = 2E(I lj,p)2

= 2

(∑
η1

Aηη1Sη1([p/R])

)2

+O

(
2j(η)

min (R,S)

)
, (18)

where j(η) ≡ η − bη−1J cJ simply denotes the scale element of η(j, l).

Proof of Theorem 3

Variance: The variance of a wavelet periodogram,

Var(I lj,p) = Var
(

(dlj,p)2
)

= E
(

(dlj,p)4
)
− E

(
(dlj,p)2

)2
.

We already know the asymptotic form of E
(

(dlj,p)2
)

. We therefore focus on

E
(

(dlj,p)4
)

= E

(∑
r

Xrψ
l
j,p(r)

)4


= E

∑
r

∑
l1

∑
j1

∑
u1

wl1j1,u1
ψl1j1,u1

(r)ξl1j1,u1
ψlj,p(r)

4
= E

 4∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ξ
li
ji,ui

ψlj,p(ri)


=

4∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

E
(
ξl1j1,u1

ξl2j2,u2
ξl3j3,u3

ξl4j4,u4

)
wliji,ui

ψliji,ui
(ri)ψ

l
j,p(ri).

13



Consider the term E
(
ξl1j1,u1

ξl2j2,u2
ξl3j3,u3

ξl4j4,u4

)
. Using a result due to (Isserlis, 1918),

E
(
ξl1j1,u1

ξl2j2,u2
ξl3j3,u3

ξl4j4,u4

)
= E

(
ξl1j1,u1

ξl2j2,u2

)
E
(
ξl3j3,u3

ξl4j4,u4

)
+E

(
ξl1j1,u1

ξl3j3,u3

)
E
(
ξl2j2,u2

ξl3j4,u3

)
+E

(
ξl1j1,u1

ξl4j4,u4

)
E
(
ξl2j2,u2

ξl3j3,u3

)
+ κ4

where κ4 is the fourth order cumulant of the distribution of
{
ξl1j1,u1

, ξl2j2,u2
, ξl3j3,u3

, ξl4j4,u4

}
.

Moreover when {ξlj,u} is Gaussian, as in this case, κ4 ≡ 0. (See Priestley (Section 5.3,
1981) for further details.)

Using this quadravariate decomposition, the expression of E
(

(dlj,p)4
)

simplifies to

E
(

(dlj,p)4
)

=

4∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ψ
l
j,p(ri)

{
E
(
ξl1j1,u1

ξl2j2,u2

)
E
(
ξl3j3,u3

ξl4j4,u4

)
+ E

(
ξl1j1,u1

ξl3j3,u3

)
E
(
ξl2j2,u2

ξl3j4,u3

)
+ E

(
ξl1j1,u1

ξl4j4,u4

)
E
(
ξl2j2,u2

ξl3j3,u3

)}
= I1 + I2 + I3,

where, for example,

I1 =
4∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

E
(
ξl1j1,u1

ξl2j2,u2

)
E
(
ξl3j3,u3

ξl4j4,u4

)
wliji,ui

ψliji,ui
(ri)ψ

l
j,p(ri). (19)

By construction

E
(
ξl1j1,u1

ξl2j2,u2

)
= Cov(ξl1j1,u1

, ξl2j2,u2
)

= δj1,j2δu1,u2δl1,l2 .
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Hence (19) simplifies as follows:

I1 =

2∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ψ
l
j,p(ri)E

(
ξl1j1,u1

ξl2j2,u2

)

×
4∏
i=3

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ψ
l
j,p(ri)E

(
ξl3j3,u3

ξl4j4,u4

)
=

∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2
∑
r1

ψl1j1,u1
(r1)ψ

l
j,p(r1)

∑
r2

ψl1j1,u1
(r2)ψ

l
j,p(r2)∑

l3

∑
j3

∑
u3

(wl3j3,u3
)2
∑
r3

ψl3j3,u3
(r3)ψ

l
j,p(r3)

∑
r4

ψl3j3,u3
(r4)ψ

l
j,p(r4)

=

∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2
∑
r1

ψl1j1,u1
(r1)ψ

l
j,p(r1)

∑
r2

ψl1j1,u1
(r2)ψ

l
j,p(r2)

2

= E(I lj,p)2 (by recognition from formula (14))

= I2 and I3.

Thus, (changing to η(j, l) notation)

Var(Iη,p) = 3E(Iη,p)2 − E(Iη,p)2

= 2E(Iη,p)2.

However, from Theorem 2, we know that

E(Iη,p) =
∑
η1

Sη1

( p
R

)
Aη,η1 +O

(
1

min{R,S}

)
.

Hence,

Var(Iη,p) = 2E(Iη,p)2

= 2

{∑
η1

Aη,η1Sη

( p
R

)
+O

(
1

min{R,S}

)}2

.

From the work of Nason et al./ (2000) it is known that Ψl
j(τ ) = O(1), uniformly in τ .

Hence it follows that

Aη(j,l),η(j1,l1) =
∑
τ

Ψl
j(τ )Ψl1

j1
(τ ) = O(22j(η)).

Thus, as η is fixed

Var(Iη,p) = 2

{∑
η1

Aη,η1Sη

( p
R

)}2

+O

(
22j(η)

min{R,S}

)
.
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Covariance:

Cov(I laja,p, I
lb
jb,q

) = Cov

((
dlaja,p

)2
,
(
dlbjb,q

)2)
= E

((
dlaja,p

)2 (
dlbjb,q

)2)
− E

((
dlaja,p

)2
)E(
(
dlbjb,p

)2)

We already know the form of E
((

dlj,p

)2)
. Hence we focus on the term

E
((

dlaja,p

)2 (
dlbjb,q

)2)
= E

(∑
r

Xrψ
la
ja,p

(r)

)2(∑
s

Xsψ
ls
jb,p

(s)

)2


= E

∑
r

∑
l1

∑
j1

∑
u1

wl1j1,u1
ψl1j1,u1

(r)ξl1j1,u1
ψlaja,p(r)

2

×

∑
s

∑
l2

∑
j2

∑
u2

wl2j2,u2
ψl2j2,u2

(s)ξl2j2,u2
ψlbjb,q(s)

2
=

2∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ψ
la
ja,p

(ri)

4∏
i=3

∑
si

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(si)ψ
lb
jb,q

(si)

E
(
ξl1j1,u1

ξl2j2,u2
ξl3j3,u3

ξl4j4,u4

)
Using Isserlis’ theorem, together with the fact that the fourth order joint cumulant of
Gaussian random variables is zero, we can expand the above expression as follows:

E
((

dlaja,p

)2 (
dlbjb,q

)2)
=

2∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ψ
la
ja,p

(ri)

4∏
i=3

∑
si

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(si)ψ
lb
jb,q

(si){
E
(
ξl1j1,u1

ξl2j2,u2

)
E
(
ξl3j3,u3

ξl4j4,u4

)
+ E

(
ξl1j1,u1

ξl3j3,u3

)
E
(
ξl2j2,u2

ξl3j4,u3

)
+E

(
ξl1j1,u1

ξl4j4,u4

)
E
(
ξl2j2,u2

ξl3j3,u3

)}
= I1 + I2 + I3.

Now recall that by construction E(ξl1j1,u1
ξl2j2,u2

) = δj1,j2δu1,u2δl1,l2 . It therefore follows
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that:

I1 =

2∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ψ
la
ja,p

(ri)

4∏
i=3

∑
si

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(si)ψ
lb
jb,q

(si)

E
(
ξl1j1,u1

ξl2j2,u2

)
E
(
ξl3j3,u3

ξl4j4,u4

)
=

∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2
∑
r1

ψl1j1,u1
(r1)ψ

la
ja,p

(r1)
∑
r2

ψl1j1,u1
(r2)ψ

la
ja,p

(r2)∑
l3

∑
j3

∑
u3

(wl3j3,u3
)2
∑
s3

ψl3j3,u3
(s3)ψ

lb
jb,q

(s3)
∑
s4

ψl3j3,u3
(s4)ψ

lb
jb,q

(s4).

However, recall from equation (14) that

E(I laja,p) =
∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2
∑
r1

ψl1j1,u1
(r1)ψ

la
ja,p

(r1)
∑
r2

ψl1j1,u1
(r2)ψ

la
ja,p

(r2)

Hence, I1 = E(I laja,p)E(I lbjb,q). Furthermore,

I2 =

2∏
i=1

∑
ri

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(ri)ψ
la
ja,p

(ri)

4∏
i=3

∑
si

∑
li

∑
ji

∑
ui

wliji,ui
ψliji,ui

(si)ψ
lb
jb,q

(si)

E
(
ξl1j1,u1

ξl3j3,u3

)
E
(
ξl2j2,u2

ξl4j4,u4

)
=

∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2
∑
r1

ψl1j1,u1
(r1)ψ

la
ja,p

(r1)
∑
s3

ψl1j1,u1
(s3)ψ

lb
jb,q

(s3)∑
l2

∑
j2

∑
u2

(wl2j2,u2
)2
∑
r2

ψl2j2,u2
(r2)ψ

la
ja,p

(r2)
∑
s4

ψl2j2,u2
(s4)ψ

lb
jb,q

(s4)

=

∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2
∑
r1

ψl1j1,u1
(r1)ψ

la
ja,p

(r1)
∑
r2

ψl1j1,u1
(r2)ψ

lb
jb,q

(r2)

2

.

Finally, it is easily shown that I3 = I2.
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Drawing our expressions for I1, I2 and I3 together we find that,

Cov(I laja,p, I
lb
jb,q

) = E(I laja,pI
lb
jb,q

)− E(I laja,p)E(I lbjb,q)

= I1 + I2 + I3 − E(I laja,p)E(I lbjb,q)

= 2

∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2
∑
r1

ψl1j1,u1
(r1)ψ

la
ja,p

(r1)
∑
r2

ψl1j1,u1
(r2)ψ

lb
jb,q

(r2)

2

= 2

∑
l1

∑
j1

∑
u1

(wl1j1,u1
)2αl1,laj1,ja

(u1,p)αl1,lbj1,jb
(u1,q)

2

.
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