19 research outputs found

    An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    Get PDF
    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH_3COOH) were intercompared in central Virginia. HCOOH and CH_3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH impregnated quartz filters, K_2CO_3 and Na_2CO_3 impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Samples were collected during 31 discrete day and night intervals of 0.5–2 hour duration over a 4-day period. Performance of the mist chamber and K_2CO_3 impregnated filter techniques were also evaluated using zero air and ambient air spiked with HCOOH_g, CH_3COOH_g, and formaldehyde (CH_2O_g) from permeation sources. Results of this intercomparison show significant systematic and episodic artifacts among many currently deployed measurement systems for HCOOH_g and CH_3COOH_g. The spiking experiments revealed no significant interferences for the mist chamber technique and results generated by the mist chamber and denuder techniques were statistically indistinguishable. The condensate technique showed general agreement with the mist chamber and denuder methods, but episodic bias between these systems was inferred from large and significant differences observed during the first day of sampling. Nylasorb membranes are unacceptable for collecting carboxylic acid vapors as they did not retain HCOOH_g and CH_3COOH_g quantitatively. Strong base impregnated filter and GC resin sampling techniques are prone to large positive interferences apparently resulting, in part, from reactions involving CH_2O_g to generate HCOOH and CH_3COOH subsequent to collection. Significant bias presumably associated with differences in postcollection handling was observed for particulate phase measurements by participating groups. Analytical bias did not contribute significantly to differences in vapor and particulate phase measurements

    Evaluation of forest canopy models for estimating isoprene emissions

    Full text link
    During the summer of 1992, isoprene emissions were measured in a mixed deciduous forest near Oak Ridge, Tennessee. Measurements were aimed at the experimental scale-up of emissions from the leaf level to the forest canopy to the mixed layer. Results from the scale-up study are compared to different canopy models for determining the leaf microclimate as input to isoprene emission algorithms. These include (1) no canopy effects, (2) a simple vertical scaling canopy model with a leaf energy balance, and (3) a numerical canopy model which accounts for leaf-sun geometries, photosynthesis, respiration, transpiration, and gas transport in the canopy. Initial evaluation of the models was based upon a standard emission rate factor of 90 μgC g-1 hr-1 (0.42 nmol g-1 s-1) taken from leaf cuvette measurements and a biomass density factor of 203 g m-2 taken from biomass surveys and a flux footprint analysis. The results indicated that predicted fluxes were consistent among the models to within approximately ±20%, but that the models overestimated the mean flux by about a factor of 2 and overestimated the maximum observed flux by 30 to 50%. Adjusting the standard emission factor and biomass density each downward by 20% yielded predicted means approximately 20% greater than the observed means and predicted maxima approximately 25% less than the observed maxima. Accounting for changes in biomass density as a function of direction upwind of the tower improved the overall model performance

    Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques

    Full text link
    Isoprene fluxes were estimated using eight different measurement techniques at a forested site near Oak Ridge, Tennessee, during July and August 1992. Fluxes from individual leaves and entire branches were estimated with four enclosure systems, including one system that controls leaf temperature and light. Variations in isoprene emission with changes in light, temperature, and canopy depth were investigated with leaf enclosure measurements. Representative emission rates for the dominant vegetation in the region were determined with branch enclosure measurements. Species from six tree genera had negligible isoprene emissions, while significant emissions were observed for Quercus, Liquidambar, and Nyssa species. Abovecanopy isoprene fluxes were estimated with surface layer gradients and relaxed eddy accumulation measurements from a 44-m tower. Midday net emission fluxes from the canopy were typically 3 to 5 mg C m-2 h-1, although net isoprene deposition fluxes of-0.2 to -2 mg C m-2 h-1 were occasionally observed in early morning and late afternoon. Above-canopy CO2 fluxes estimated by eddy correlation using either an open path sensor or a closed path sensor agreed within ±5%. Relaxed eddy accumulation estimates of CO2 fluxes were within 15% of the eddy correlation estimates. Daytime isoprene mixing ratios in the mixed layer were investigated with a tethered balloon sampling system and ranged from 0.2 to 5 ppbv, averaging 0.8 ppbv. The isoprene mixing ratios in the mixed layer above the forested landscape were used to estimate isoprene fluxes of 2 to 8 mg C m-2 h-1 with mixed layer gradient and mixed layer mass balance techniques. Total foliar density and dominant tree species composition for an approximately 8100 km2 region were estimated using high-resolution (30 m) satellite data with classifications supervised by ground measurements. A biogenic isoprene emission model used to compare flux measurements, ranging from leaf scale (10 cm2) to landscape scale (102 km2), indicated agreement to within ±25%, the uncertainty associated with these measurement techniques. Existing biogenic emission models use isoprene emission rate capacities that range from 14.7 to 70 μg C g-1 h-1 (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m-2 s-1) for oak foliage. An isoprene emission rate capacity of 100 μg C g-1 h-1 for oaks in this region is more realistic and is recommended, based on these measurements

    Simulation of summertime ozone over North America

    Full text link
    The concentrations of O3 and its precursors over North America are simulated for three summer months with a three-dimensional, continental-scale photochemical model using meteorological input from the Goddard Institute for Space Studies (GISS) general circulation model (GCM). The model has 4°×5° grid resolution and represents non linear chemistry in urban and industrial plumes with a subgrid nested scheme. Simulated median afternoon O3 concentrations at rural U.S. sites are within 5 ppb of observations in most cases, except in the south central United States where concentrations are overpredicted by 15–20 ppb. The model captures successfully the development of regional high-O3 episodes over the northeastern United States on the back side of weak, warm, stagnant anticyclones. Simulated concentrations of CO and nonmethane hydrocarbons are generally in good agreement with observations, concentrations of NOx are underpredicted by 10–30%, and concentrations of peroxyacylnitrates (PANs) are overpredicted by a factor of 2 to 3. The overprediction of PANs is attributed to flaws in the photochemical mechanism, including excessive production from oxidation of isoprene, and may also reflect an underestimate of PANs deposition. Subgrid nonlinear chemistry as captured by the nested plumes scheme decreases the net O3 production computed in the United States boundary layer by 8% on average

    Isoprene emission inventory for the BOREAS southern study area

    No full text

    BOREAS TGB-10 Oxidant Flux Data over the SSA

    No full text
    The BOREAS TGB-10 team collected several trace gas data sets in its efforts to determine the role of biogenic hydrocarbon emissions with respect to boreal forest carbon cycles. This oxidant data set contains measured peroxide (H2O2 and total organic peroxides (ROOH)) and ozone concentrations as well as H2O2 and ROOH deposition velocities. These data were obtained at the SSA-OJP site during the summer of 1994. Measurements were made from May to September 1994. The data are stored in tabular ASCII files. Some important results were: (1) Ozone concentrations were consistently low, 20-30 ppb, during the summer of 1994. (2) Peroxide concentrations showed a seasonal variation with highest concentrations occurring in July (IFC-2). (3) Midday H2O2 levels averaged around 1.4 ppb during IFC-2 and 0.4 - 0.5 ppb during IFC's 1 and 3. (4) Midday organic peroxide concentrations were lower, averaging 0.8 ppb during IFC-2, and 0.4 - 0.5 ppb during IFC's 1 and 3. (5) The rough pine forest canopy serves as a significant sink for H2O2. (6) Midday H2O2 deposition velocities averaged 4 - 7 cm/s. (7) Organic peroxide deposition velocities (measured as total ROOH) were approximately 40% as large as those of H2O2

    BOREAS TGB-10 Oxidant Concentration Data over the SSA

    No full text
    The BOREAS TGB-10 team collected several trace gas data sets in its efforts to determine the role of biogenic hydrocarbon emissions with respect to boreal forest carbon cycles. This data set contains measured peroxide (H2O2 and total organic peroxides (ROOH)) and ozone concentrations as well as H2O2 and ROOH deposition velocities. These data were obtained at the SSA-OJP site from May to September 1994. The data are stored in tabular ASCII files. Some important results were: (1) Ozone concentrations were consistently low, 20-30 ppb, during the summer of 1994. (2) Peroxide concentrations showed a seasonal variation with highest concentrations occurring in July (IFC-2). (3) Midday H2O2 levels averaged around 1.4 ppb during IFC-2 and 0.4 - 0.5 ppb during IFC's 1 and 3. (4) Midday organic peroxide concentrations were lower, averaging 0.8 ppb during IFC-2, and 0.4 - 0.5 ppb during IFC's 1 and 3. (5) The rough pine forest canopy serves as a significant sink for H2O2. (6) Midday H2O2 deposition velocities averaged 4 - 7 cm/s. (7) Organic peroxide deposition velocities (measured as total ROOH) were approximately 40% as large as those of H2O2
    corecore