1,890 research outputs found

    Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe

    Get PDF
    This review describes environmental factors that influence severity of crop disease epidemics, especially in the UK and north-west Europe, in order to assess the effects of climate change on crop growth and yield and severity of disease epidemics. While work on some diseases, such as phoma stem canker of oilseed rape and fusarium ear blight of wheat, that combine crop growth, disease development and climate change models is described in detail, climate-change projections and predictions of the resulting biotic responses to them are complex to predict and detailed models linking climate, crop growth and disease development are not available for many crop-pathogen systems. This review uses a novel approach of comparing pathogen biology according to 'ecotype' (a categorization based on aspects such as epidemic type, dissemination method and infection biology), guided by detailed disease progress models where available to identify potential future research priorities for disease control. Consequences of projected climate change are assessed for factors driving elements of disease cycles of fungal pathogens (nine important pathogens are assessed in detail), viruses, bacteria and phytoplasmas. Other diseases classified according to 'ecotypes' were reviewed and likely changes in their severity used to guide comparable diseases about which less information is available. Both direct and indirect effects of climate change are discussed, with an emphasis on examples from the UK, and considered in the context of other factors that influence diseases and particularly emergence of new diseases, such as changes to farm practices and introductions of exotic material and effects of other environment changes such as elevated CO 2. Good crop disease control will contribute to climate change mitigation by decreasing greenhouse gas emissions from agriculture while sustaining production. Strategies for adaptation to climate change are needed to maintain disease control and crop yields in north-west Europe.Peer reviewe

    Arable crop disease control, climate change and food security

    Get PDF
    Copyright Association of Applied BiologistsGlobal food security is threatened by crop diseases that account for average yield losses of 16%. Climate change is exacerbating threats to food security in much of the world, emphasising the need to increase food production in northern European countries such as the UK. However, to mitigate climate change, crops must be grown so as to minimise greenhouse gas emissions (GHG); results with UK oilseed rape demonstrate how disease control in arable crops can contribute to climate change mitigation. However, work examining impacts of climate change on UK epidemics of winter oilseed rape diseases illustrates unexpected, contrasting impacts of climate change on complex plant-disease interactions. In England, phoma stem canker is expected to become more severe whilst light leaf spot is expected to become less severe. Such work can provide guidance for government and industry planning for adaptation to impacts of climate change on crops to ensure future food securityFinal Accepted Versio

    S-Duality for Linearized Gravity

    Full text link
    We develope the analogue of S-duality for linearized gravity in (3+1)-dimensions. Our basic idea is to consider the self-dual (anti-self-dual) curvature tensor for linearized gravity in the context of the Macdowell-Mansouri formalism. We find that the strong-weak coupling duality for linearized gravity is an exact symmetry and implies small-large duality for the cosmological constant.Comment: 18 pages, Latex, to be published in Phys. Lett.

    Ariel - Volume 4 Number 6

    Get PDF
    Editors David A. Jacoby Eugenia Miller Tom Williams Associate Editors Paul Bialas Terry Burt Michael Leo Gail Tenikat Editor Emeritus and Business Manager Richard J. Bonnano Movie Editor Robert Breckenridge Staff Richard Blutstein Mary F. Buechler J.D. Kanofsky Rocket Weber David Maye

    A renormalization group invariant scalar glueball operator in the (Refined) Gribov-Zwanziger framework

    Get PDF
    This paper presents a complete algebraic analysis of the renormalizability of the d=4d=4 operator Fμν2F^2_{\mu\nu} in the Gribov-Zwanziger (GZ) formalism as well as in the Refined Gribov-Zwanziger (RGZ) version. The GZ formalism offers a way to deal with gauge copies in the Landau gauge. We explicitly show that Fμν2F^2_{\mu\nu} mixes with other d=4d=4 gauge variant operators, and we determine the mixing matrix ZZ to all orders, thereby only using algebraic arguments. The mixing matrix allows us to uncover a renormalization group invariant including the operator Fμν2F^2_{\mu\nu}. With this renormalization group invariant, we have paved the way for the study of the lightest scalar glueball in the GZ formalism. We discuss how the soft breaking of the BRST symmetry of the GZ action can influence the glueball correlation function. We expect non-trivial mass scales, inherent to the GZ approach, to enter the pole structure of this correlation function.Comment: 27 page

    Gravitational Duality in MacDowell-Mansouri Gauge Theory

    Get PDF
    Strong-weak duality invariance can only be defined for particular sectors of supersymmetric Yang-Mills theories. Nevertheless, for full non-Abelian non-supersymmetric theories, dual theories with inverted couplings, have been found. We show that an analogous procedure allows to find the dual action to the gauge theory of gravity constructed by the MacDowell-Mansouri model plus the superposition of a Θ\Theta term.Comment: 9 pages, LaTeX, no figure

    Simulations of neutron background in a time projection chamber relevant to dark matter searches

    Full text link
    Presented here are results of simulations of neutron background performed for a time projection chamber acting as a particle dark matter detector in an underground laboratory. The investigated background includes neutrons from rock and detector components, generated via spontaneous fission and (alpha, n) reactions, as well as those due to cosmic-ray muons. Neutrons were propagated to the sensitive volume of the detector and the nuclear recoil spectra were calculated. Methods of neutron background suppression were also examined and limitations to the sensitivity of a gaseous dark matter detector are discussed. Results indicate that neutrons should not limit sensitivity to WIMP-nucleon interactions down to a level of (1 - 3) x 10^{-8} pb in a 10 kg detector.Comment: 27 pages (total, including 3 tables and 11 figures). Accepted for publication in Nuclear Instruments and Methods in Physics Research - Section

    The three-dimensional structure of Saturn's E ring

    Full text link
    Saturn's diffuse E ring consists of many tiny (micron and sub-micron) grains of water ice distributed between the orbits of Mimas and Titan. Various gravitational and non-gravitational forces perturb these particles' orbits, causing the ring's local particle density to vary noticeably with distance from the planet, height above the ring-plane, hour angle and time. Using remote-sensing data obtained by the Cassini spacecraft in 2005 and 2006, we investigate the E-ring's three-dimensional structure during a time when the Sun illuminated the rings from the south at high elevation angles (> 15 degrees). These observations show that the ring's vertical thickness grows with distance from Enceladus' orbit and its peak brightness density shifts from south to north of Saturn's equator plane with increasing distance from the planet. These data also reveal a localized depletion in particle density near Saturn's equatorial plane around Enceladus' semi-major axis. Finally, variations are detected in the radial brightness profile and the vertical thickness of the ring as a function of longitude relative to the Sun. Possible physical mechanisms and processes that may be responsible for some of these structures include solar radiation pressure, variations in the ambient plasma, and electromagnetic perturbations associated with Saturn's shadow.Comment: 42 Pages, 13 Figures, modified to include minor proof correction
    corecore