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Abstract

This paper presents a complete algebraic analysis of the renormalizability of thed = 4 operatorF2
µν in the Gribov-Zwanziger

(GZ) formalism as well as in the Refined Gribov-Zwanziger (RGZ) version. The GZ formalism offers a way to deal with gauge
copies in the Landau gauge. We explicitly show thatF2

µν mixes with otherd = 4 gauge variant operators, and we determine the
mixing matrixZ to all orders, thereby only using algebraic arguments. The mixing matrix allows us to uncover a renormalization
group invariant including the operatorF2

µν. With this renormalization group invariant, we have paved the way for the study of
the lightest scalar glueball in the GZ formalism. We discusshow the soft breaking of the BRST symmetry of the GZ action can
influence the glueball correlation function. We expect non-trivial mass scales, inherent to the GZ approach, to enter the pole
structure of this correlation function.

1 Introduction

QCD is the theory of strong interactions describing quarks and gluons which displays confinement at low energies. The
mechanism behind confinement is still not successfully described. Even if one omits the quarks, the theory remains con-
fining. Therefore, confinement is highly entangled with the dynamics of gluons, which makes glueballs very interesting
objects to investigate. The existence of glueballs would bea pinnacle of the correctness of QCD, however, so far, there
is still no clear experimental evidence for the existence ofglueballs. This is mainly due to the mixing of glueball states
with meson states which contain quarks. By increasing the statistics and/or by doing more involved experiments creating
certain glueball states which cannot mix with quark states (oddballs), one hopes to uncover some clear evidence for glue-
ball states. We mention a few experiments to demonstrate thegeneral interest in glueballs:PANDA [1], BES III [2] and
GlueX [3], ALICE at CERN [4].

The lack of experimental evidence has not stopped the community to widely investigate glueballs in various theoreti-
cal models, see [5] and their references therein. Currently, theoretical estimates of e.g. masses of the different glueballs
are compared to the lattice data. In lattice gauge theories,there is no doubt about the existence of glueballs and one
can even work in pure Yang-Mills gauge theory [6]. There are many phenomenological models which contribute to our
intuition in glueballs. More direct contact with fundamental QCD can be made by identifying suitable gauge invariant
operators, which carry the correct quantum numbers to create/annihilate particular glueball states [7]. This is in accor-
dance with the direct approach to study bound states in quantum field theory [8]. The mass of the glueball can then be
determined by the leading singularity in its propagator which, if the glueball is stable, is just a simple pole. Of course,
it is necessary to take into account non-perturbative effects, as glueballs are inherently connected to the non-perturbative
region of QCD. One widely used method to estimate these propagators is based on QCD sumrules [9, 10], while taking
into account condensates, sometimes in combination with instanton or other nonperturbative effects. Also in holographic
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descriptions of QCD, such glueball correlators have already been investigated, see for instance [11, 12].

In this paper, we shall concentrate on identifying a suitable composite operatorR , which is a renormalization group in-
variant containingF2

µν, representing the lightest scalar glueball. Let us explainhow we shall take into account a particular
source of non-perturbative effects. For this, we need a bit of background. As is well known, the Faddeev-Popov quantiza-
tion of the Yang-Mills gauge theory was constructed in orderto restrict the path integration only over gauge inequivalent
fields. This restriction is translated at the level of the action by implementing a gauge, e.g. the Landau gauge∂µAµ = 0,
through the introduction of extra terms in the action, whichin return break the local gauge invariance. In 1977, Gribov
showed [13] that this gauge fixing procedure in Yang-Mills gauge theories does not entirely restrict the path integration to
gauge inequivalent fields, i.e. there are still multiple gauge copiesAµ which all fulfill the Landau gauge condition. More-
over, it appeared that the infrared behavior of the gluon andthe ghost propagator is strongly influenced when handling
these copies. Therefore, there was a need for a formalism which took into account these Gribov copies, even if it would
be only in a partial way. After a semiclassical treatment by Gribov in [13], Zwanziger managed to construct an action
which analytically implements the restriction to the Gribov regionΩ [14]. This action is called the Gribov-Zwanziger
actionSGZ. The regionΩ is defined as the set of field configurations fulfilling the Landau gauge condition and for which
the Faddeev-Popov operator,

M ab = −∂µ

(
∂µδab+g facbAc

µ

)
, (1)

is strictly positive. Therefore,

Ω ≡ {Aa
µ, ∂µAa

µ = 0,M ab > 0} . (2)

The boundary,∂Ω, of the regionΩ is called the (first) Gribov horizon. The restriction of the path integral toΩ removes
most of the Gribov copies in the Landau gauge related to (infinitesimal) gauge transformations [13]. However, there are
still copies present inΩ and hence a further restriction to the Fundamental Modular Region (FMR), the region free of
any Gribov copies, should be implemented. Unfortunately, till now, nobody knows how to handle such a restriction to the
FMR. Therefore, the best analytical approach to restrict the number of gauge copies is by working withSGZ. We recall
that SGZ is renormalizable to all orders [15, 16, 17], even in the presence of massless [18, 19] or massive quarks [20].
Implementing the restriction to the horizon introduces a first non-perturbative mass scale, the so-called Gribov parameter
γ2. Also, we have found in [21, 22] that the auxiliary fields introduced by Zwanziger to construct the actionSGZ, develop
their own dynamics. This can introduce a second mass scale into the action. Generally, such non-perturbative mass scales
are expected to be transmitted into the pole mass of the correlation functions.

In a previous paper [23] we have investigated the operatorF2
µν in the ordinary Yang-Mills theory with Landau gauge

fixing. This was already far from being trivial as at the quantum level mixing occurs with two other 4 dimensional oper-
ators, i.e. a BRST exact operatorE = s(. . .), and an operatorH which vanishes upon using the equations of motion. We
have shown that this mixing does not have consequences when turning to physical states. Indeed, a BRST exact operator
is always irrelevant at the level of physical states as the Yang-Mills action is invariant under the BRST symmetry. In
this paper, we shall elaborate on the operatorF2

µν by investigating it in the more complex Gribov-Zwanziger framework,
whereby exploiting the construction we have set up in [23]. In this case, a similar mixing shall occur, but, in contrast with
the Yang-Mills case this mixing shall have consequences at the physical level. Indeed, as the Gribov-Zwanziger action
gives rise to a soft breaking of the BRST symmetry [22], one can figure out that the corresponding BRST exact operator
which will mix with F 2

µν, will no longer be irrelevant. Let us mention that an attemptto calculate the glueball correlator〈
F2

µν(x)F
2
αβ(y)

〉
has been done in [24], but without taking into account the mixing of F2

µν with other operators. We start the

paper with an overview of the Gribov-Zwanziger action in section 2. We also recapitulate the Refined Gribov-Zwanziger
action which takes into account the dynamics of the new fieldsintroduced by Zwanziger. In section 3, a renormalizable
action including the local, non-integrated operatorF2

µν(x) is constructed whereby in section 4 we shall analyze the mixing
of this operator to all orders. In section 5, we shall determine the renormalization group invariant which containsF2

µν. We
end this paper with a conclusion in section 6, where we also present some insights on the potential relevance of the soft
BRST symmetry breaking of the GZ action.
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2 Overview of the (Refined) Gribov-Zwanziger action

2.1 The original Gribov-Zwanziger action

In this section we shall shortly recapitulate the ordinary Gribov-Zwanziger action in Euclidean space time which imple-
ments the restriction of the path integral to the regionΩ. In [14], Zwanziger derived the following action,

Sh = SYM +Sgf + γ4
Z

ddxh(x) , (3)

with SYM the classical Yang-Mills action,

SYM =
1
4

Z

ddxFa
µνFa

µν , (4)

Sgf the Faddeev-Popov gauge fixing

Sgf =

Z

ddx
(

ba∂µAa
µ +ca∂µDab

µ cb
)

, (5)

andh(x) the horizon function,

h(x) = g2 f abcAb
µ

(
M −1)ad

f decAe
µ . (6)

The horizon condition:

〈h(x)〉 = d(N2−1) , (7)

with d the number of space-time dimensions, needs to be fulfilled inorder to assure that we are working with a gauge
theory quantized in the Landau gauge. This was proven using statistical arguments in [14, 15]. The actionSh contains a

non-local term, but one can localize the horizon function byintroducing the following set of additional fields:
(

ϕac
µ ,ϕac

µ

)

which is a pair of complex conjugate bosonic fields, and
(
ωac

µ ,ωac
µ

)
, which is a pair of Grasmann fields. After this proce-

dure,Sh gets replaced bySGZ, which reads

SGZ = S0 +Sγ , (8)

with

S0 = SYM +Sgf

+

Z

ddx
(

ϕac
µ ∂ν

(
∂νϕac

µ +g fabmAb
νϕmc

µ

)
−ωac

µ ∂ν

(
∂νωac

µ +g fabmAb
νωmc

µ

)
−g
(
∂νωac

µ

)
f abm(Dνc)b ϕmc

µ

)
,

Sγ = −γ2g
Z

ddx

(
f abcAa

µϕbc
µ + f abcAa

µϕbc
µ +

d
g

(
N2−1

)
γ2
)

, (9)

We can further simplify the notation of the additional fields
(

ϕac
µ ,ϕac

µ ,ωac
µ ,ωac

µ

)
asS0 displays a symmetry with respect

to the composite indexi = (µ,c). Therefore, we can set
(

ϕac
µ ,ϕac

µ ,ωac
µ ,ωac

µ

)
= (ϕa

i ,ϕ
a
i ,ω

a
i ,ω

a
i ) , (10)

so we get

S0 = SYM +Sgf +

Z

ddx
(

ϕa
i ∂µ

(
Dab

µ ϕb
i

)
−ωa

i ∂µ

(
Dab

µ ωb
i

)
−g fabc∂µωa

i Dbd
µ cdϕc

i

)
. (11)

Finally, the horizon condition (7) can be written in a more practical version as

∂Γ
∂γ2 = 0, (12)

whereby the quantum actionΓ is obtained through the definition

e−Γ =

Z

[dΦ]e−SGZ , (13)

3



where
R

[dΦ] stands for the integration over all the fields.

For the Gribov-Zwanziger action, the conventional BRST symmetry is softly broken [14, 22]. We recall that the BRST
transformations of all the fields are given by

sAa
µ = −(Dµc)a , sca =

1
2

g fabccbcc ,

sca = ba , sba = 0,

sϕa
i = ωa

i , sωa
i = 0,

sωa
i = ϕa

i , sϕa
i = 0. (14)

The existence of this explicit breaking can be easily checked by releasing the BRST transformations onto the action
SGZ,

sSGZ = gγ2
Z

ddx fabc
(

Aa
µωbc

µ −
(
Dam

µ cm)
(

ϕbc
µ + ϕbc

µ

))
. (15)

We refer to [22] for more details concerning this breaking.

In order to discuss the renormalizability ofSGZ, we treat the breaking as a composite operator to be introduced into the
action by means of a suitable set of external sources. This procedure can be done in a BRST invariant way, by embedding
SGZ into a larger action, namely

ΣGZ = SYM +Sgf +S0+Ss, (16)

whereby

Ss = s
Z

ddx
(
−Uai

µ Dab
µ ϕb

i −Vai
µ Dab

µ ωab
i −Uai

µ Vai
µ

)

=

Z

ddx
(
−Mai

µ Dab
µ ϕb

i −g fabcUai
µ Dbd

µ cdϕc
i +Uai

µ Dab
µ ωb

i

−Nai
µ Dab

µ ωb
i −Vai

µ Dab
µ ϕb

i +g fabcVai
µ Dbd

µ cdωc
i −Mai

µ Vai
µ +Uai

µ Nai
µ

)
. (17)

We have introduced 4 new sourcesUai
µ , Vai

µ , Mai
µ andNai

µ with the following BRST transformations, and

sUai
µ = Mai

µ , sMai
µ = 0,

sVai
µ = Nai

µ , sNai
µ = 0. (18)

This embedding into a larger action is necessary for the algebraic proof of the renormalizability as this heavily relies
on having a BRST symmetry. Replacing the sources with their physical values in the end, returns the Gribov-Zwanziger
action,

Uai
µ

∣∣
phys

= Nai
µ

∣∣
phys

= 0, (19)

Mab
µν

∣∣∣
phys

= Vab
µν

∣∣∣
phys

= γ2δabδµν , (20)

as one can easily check.

2.2 The Refined Gribov-Zwanziger action

Let us explain the origin of the Refined Gribov-Zwanziger action. In the original Gribov-Zwanziger framework in 4 di-
mensions, one obtains an infrared suppressed, positivity violating gluon propagator which tends towards zero for zero
momentum and an infrared enhanced ghost propagator. This behavior of the gluon and the ghost propagator stemming
from the actionSGZ seemed to be in agreement with the lattice results for a long time. Until more recently, the authors of
[25] discovered a completely different behavior of the propagators in the deep infrared working on larger lattices. Now
the ghost propagator no longer seems to be enhanced and the gluon propagator reaches a finite value at zero momentum.
Since the publication of [25], more lattice data have confirmed these striking results [26, 27, 28, 29, 30, 31]. Therefore,
the Gribov-Zwanziger framework appeared to be in disagreement with these newest lattice data. However, in [21, 22], we
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have shown that it is still possible to obtain results with the help of the Gribov-Zwanziger action which are in qualitative
concordance with these new lattice data by taking into account the dynamics of the fields(ϕac

µ , ϕac
µ , ωac

µ ,ωac
µ ). This gives

rise to additional non-perturbative effects within the Gribov-Zwanziger framework as, for instance, the dimension two
condensate〈ϕac

µ ϕac
µ −ωac

µ ωac
µ 〉, which has been found [21, 22] to be proportional toγ2. It is apparent that the dynamics of

these extra fields is highly entangled to the existence of thehorizon. Therefore, we have refined the Gribov-Zwanziger ac-
tion by explicitly adding the operatorϕac

µ ϕac
µ −ωac

µ ωac
µ from the start, while preserving the renormalizability of the theory.

The Refined Gribov-Zwanziger action is thus given by

SRGZ = SGZ +Sϕϕ +Sen, (21)

whereby

Sϕϕ = −M2
Z

ddx(ϕa
i ϕa

i −ωa
i ωa

i ) ,

Sen = 2
d(N2−1)√

2g2N

Z

ddx ς γ2M2 . (22)

We have introduced a new parameterς and a new massM2. The second termSen is a constant term, which is comparable
with the term−γ2 R

ddxd
(
N2−1

)
γ2 in the original Gribov-Zwanziger formulation (9). This term will allow us to remain

inside the Gribov regionΩ. For more details on this construction, we refer the reader to [22].

3 The (Refined) Gribov-Zwanziger action with the inclusion of the scalar glueball
operator

3.1 Generalities

The most natural way to study the lightest scalar glueball isby determining the correlator1
〈

F2(x)
4

F2(y)
4

〉
. This correlator

can be obtained by adding the operatorF2
µν/4 to the (Refined) Gribov-Zwanziger action by coupling it to asourceq(x). In

this fashion, we obtain the correlator as follows,
[

δ
δq(y)

δ
δq(x)

Zc
]

q=0
=

〈
F2(x)

4
F2(y)

4

〉
, (23)

with Zc the generator of connected Green functions. In [23] we have studied the glueball operator in the standard Yang-
Mills theory, supplemented with the Landau gauge fixing. Theframework we have set up for pure Yang-Mills theories,
can be now extended to the more complex case of the Gribov-Zwanziger action, which is our current goal.

Unfortunately, simply addingF2
µν to the action turns out to be too naive. In [23], we have seen that the 4 dimensional

operatorF2
µν mixes with other 4 dimensional operators ind = 4, in agreement with the general theory concerning the

renormalization of gauge invariant operators [32, 33, 34].

Obviously, we also expect a similar mixing in the Gribov-Zwanziger framework. As outlined in [23, 35, 36], we can
distinguish between 3 different classes of dimension 4 operators. The first classC1 is the set of the gauge invariant opera-
tors, for exampleF2

µν. The cohomology of the nilpotent BRST symmetry generatorsallows to identify theC1 operatorsF
as those which can be written assF = 0, but alsoF 6= s(. . .). The second classC2 are the BRST exact operators, which
are trivially BRST invariant due to the nilpotency of the BRST operator. ThusE ∈C2 if and only if E = s(. . .). The third
classC3 contains operators which vanish when the equations of motion are invoked. One can then argue that the mixing
matrix of these operators must be upper triangular,




F0

E0

H0



 =




ZF F ZF E ZF H

0 ZE E ZE H
0 0 ZH H








F

E

H



 . (24)

This particular behavior of the mixing of the various class of operators can be easily understood [35, 36]. BareC2 oper-
ators cannot receive contributions from gauge invariantC1 operators: matrix elements of a bare BRST exact operatorE

1. At least, this is our starting point. Later, we shall determine a renormalization group invariantR containingF2
µν, so we can calculate〈R (x)R (y)〉.
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between physical states are zero. But, if there would be a renormalized gauge invariantC1 contribution in the expansion
of E , then there would be room for a nonvanishing contribution, which is of course a contradiction. Likewise, anyC3

operator vanishes upon using the equations of motion, whileC1- and aC2 operators in general do not, hence aC3 operator
will not receive corrections from the other type of operators.

In [23], we have strictly proven in an algebraic fashion the upper triangular form of the mixing matrix for the operatorF2
µν,

just by using the Ward identities of the action. In particular, we have proven that the following action is renormalizable
for ordinary Yang-Mills gauge theories in the Landau gauge,

ΣYMglue = SYM +

Z

ddx
(

ba∂µAa
µ+ca∂µDab

µ cb
)

+

Z

ddxq
1
4

F2
µν

︸︷︷︸
∈C1

+

Z

ddxλ∂µcaAa
µ+

Z

ddxη
(

∂µbaAa
µ+ ∂µcaDab

µ cb
)

︸ ︷︷ ︸
∈C2

+

Z

ddxαAa
µ

δ(SYM +Sgf)

δAa
µ︸ ︷︷ ︸

∈C3

, (25)

whereby we see the three different classes of operators arising. We have introduced three new sources: the doublet (λ,η)
with sη = λ and the color singletα. The term

(
∂µbaAa

µ+ ∂µcaDab
µ cb

)
is indeed an element belonging to the second

classC2, as we can rewrite it ass(∂µcaAa
µ). In [23], we have introduced the last term through a shift of the gluon field

Aa
µ → Aa

µ+ αAa
µ.

3.2 Inclusion of the glueball operator in the Gribov-Zwanziger action

With the mixing of the 4 dimensional operators in mind, we canpropose an enlarged Gribov-Zwanziger action containing
the glueball operatorF2

µν. This action will turn out to be renormalizable. For this, wecan make two observations. Firstly, the
limit, {ϕ,ϕ,ω,ω,U,V,N,M} → 0, has to lead to our original Yang-Mills actionΣYMglue with the addition of the glueball
terms given by equation (25). Secondly, setting all the terms related to the glueball termqF2 equal to zero, we should
recover the Gribov-Zwanziger actionΣGZ in equation (16). Therefore, we propose the following starting action:

Σglue = ΣGZ +

Z

ddx qFa
µνFa

µν +

Z

ddxs
(

η
[
∂µcaAa

µ+ ∂ω∂ϕ+g fakb∂ωaAkϕb +UaDabϕb +VaDabωb +UV
])

= ΣGZ +

Z

ddx qFa
µνFa

µν +

Z

ddx(λ
[
∂µcaAa

µ + ∂ω∂ϕ+g fakb∂ωaAkϕb +UaDabϕb +VaDabωb +UV
]

+η
[
∂µbaAa

µ+ ∂µcaDab
µ cb + ∂ϕ∂ϕ− ∂ω∂ω+g fakb∂ϕaAkϕb +g fakb∂ωaDkdcdϕb−g fakb∂ωaAkωb

+Mai
µ Dab

µ ϕb
i +gUai

µ f abcDab
µ cbϕc

i −Uai
µ Dab

µ ωb
i +Nai

µ Dab
µ ωb

i −gVai
µ f abcDbd

µ cdωc
i +Vai

µ Dab
µ ϕb

i

+Mai
µ Vai

µ −Uai
µ Nai

µ

]
. (26)

Indeed, upon taking the limit{ϕ,ϕ,ω,ω,U,V,N,M} → 0, we recover the Yang-Mills action2 (25) and setting all sources
equal to zero (q, η, λ) → 0, we find our original Gribov-Zwanziger action back, see equation (16). Notice that in princi-
ple, we could have taken other possible starting actions which also enjoy these two correct limits. We could have tried to
couple different sources to the different BRST exact terms instead of employing only one sourceη. However, this would
not lead to a renormalizable action, while the action (26) does turn out to be renormalizable, as we shall prove.

We shall now try to establish the renormalizability of (26) by using the algebraic renormalization formalism [37].

The first step is to introduce two auxiliary terms necessary for the process of renormalization. Firstly, we add an ad-
ditional external termSext,1 to the action,

Sext,1 =
Z

ddx

(
−Ka

µDab
µ cb +

1
2

gLa f abccbcc
)

, (27)

which is needed to define the nonlinear BRST transformationsof the gauge fieldAa
µ and of the ghost fieldca. Ka

µ andLa

are two new BRST invariant sources which shall be set equal tozero in the end,

Ka
µ

∣∣
phys

= 0, La|phys= 0. (28)

2. The term proportional to the equations of motion will be introduced later.
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Therefore, these sources can be seen as two auxiliary sources which do not change the physics of the theory. Secondly,
we also introduce the following external term,

Sext,2 =

Z

ddxs(XiA
a
µ∂ωa

i ) =

Z

ddxYiA
a
µ∂ωa

i −

Z

ddx
(

XiD
ab
µ cb∂µωa

i +XiA
a
µ∂µϕa

i

)
, (29)

whereby(Xi ,Yi) is a new doublet of sources, i.e.sXi = Yi . This additional term is necessary in order to have a sufficient
powerful set of Ward identities. Without this term, two Wardidentities of the original Gribov-Zwanziger action would be
broken which are absolutely indispensable for the proof a the renormalization of the action (see Ward identity 8. and 9. in
the list below). Again, in the end, we shall set

Xi |phys= 0, Yi |phys= 0, (30)

We shall thus continue the analysis with the following action

Σ = Σglue+Sext,1 +Sext,2 . (31)

The second step is to search for all the Ward identities obeyed by the classical actionΣ. Doing so, we find the following
list of identities:

1. The Slavnov-Taylor idenitity:
S (Σ) = 0 , (32)

where

S (Σ) =

Z

ddx

(
δΣ

δKa
µ

δΣ
δAa

µ
+

δΣ
δLa

δΣ
δca +ba δΣ

δca + ϕa
i

δΣ
δωa

i
+ ωa

i
δΣ
δϕa

i
+Mai

µ
δΣ

δUai
µ

+Nai
µ

δΣ
δVai

µ
+ λ

δΣ
δη

+Yi
δΣ
δXi

)
. (33)

This identity is a functional translation of the BRST invariances.

2. TheU( f ) invariance:

Ui j Σ = 0, (34)

with

Ui j =

Z

ddx

(
ϕa

i
δ

δϕa
j
−ϕa

j
δ

δϕa
i

+ ωa
i

δ
δωa

j
−ωa

j
δ

δωa
i
−Ma j

µ
δ

δMai
µ
−Ua j

µ
δ

δUai
µ

+Nai
µ

δ
δNa j

µ
+Vai

µ
δ

δVa j
µ

+Yi δ
δY j +Xi δ

δX j

)
. (35)

Using Qf = Uii , we can associate an extra quantum number to thei-valued fields and sources. One can find all
quantum numbers in TABLE 1 and TABLE 2.

3. The Landau gauge condition:

δΣ
δba = ∂µAa

µ− ∂µ(ηAa
µ) . (36)

4. The modified antighost equation :

δΣ
δca + ∂µ

δΣ
δKa

µ
− ∂µ

(
η

δΣ
δKa

µ

)
= ∂(λA) . (37)

5. The ghost Ward identity:
G aΣ = ∆a

cl , (38)

with

G a =

Z

ddx

(
δ

δca +g fabc

(
cb δ

δbc + ϕb
i

δ
δωc

i
+ ωb

i
δ

δϕc
i
+Vbi

µ
δ

δNci
µ

+Ubi
µ

δ
δMci

µ

))
.

(39)
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6. Two linearly broken local constraints:

δΣ
δϕai + ∂µ

δΣ
δMai

µ
= g fabcAb

µV
ci
µ −ηg fabcAb

µV
ci
µ − ∂µ(XiA

a
µ) ,

δΣ
δωai + ∂µ

δΣ
δNai

µ
−g fabcωbi δΣ

δbc = g fabcAb
µU

ci
µ −ηg fabcAb

µU
ci
µ . (40)

7. The exactR i j invariance:
R i j Σ = 0, (41)

with

R i j =

Z

ddx

(
ϕa

i
δ

δωa
j
−ωa

j
δ

δϕa
i

+Vai
µ

δ
δNa j

µ
−Ua j

µ
δ

δMai
µ
−Xi δ

δY j

)
.

8. An extra integrated Ward identity:

Z

ddx

(
δ

δλ
−η

δ
δλ

+ca δ
δba +Uai

µ
δ

δMai
µ

+ ωa
i

δ
δϕa

i
−Xi

δ
δYi

)
Σ = 0, (42)

which expresses in functional form the BRST exactness of theoperator coupled toλ.

9. The integrated Ward Identity:

Z

ddx

(
ca δ

δωai + ωai δ
δca +Uai

µ
δ

δKa
µ
−ηUai

µ
δ

δKa
µ
−λ

δ
δYi

)
Σ = 0. (43)

10. TheX-andY-Ward identities:
Z

ddx

[
(1−η)

δ
δXi −λ

δ
δYi + ωa

i
δ

δca + ϕa
i

δ
δba

]
Σ = 0,

Z

ddx

[
(1−η)

δ
δYi + ωa

i
δ

δba

]
Σ = 0. (44)

Aa
µ ca ca ba ϕa

i ϕa
i ωa

i ωa
i

dimension 1 0 2 2 1 1 1 1
ghostnumber 0 1 −1 0 0 0 1 −1

Qf -charge 0 0 0 0 1 −1 1 −1

Table 1: Quantum numbers of the fields.

Uai
µ Mai

µ Nai
µ Vai

µ Ka
µ La q η λ Xi Yi

dimension 2 2 2 2 3 4 0 0 0 1 1
ghostnumber −1 0 1 0 −1 −2 0 0 1 0 1

Qf -charge −1 −1 1 1 0 0 0 0 0 1 1

Table 2: Quantum numbers of the sources.

Let us stress here that it is of paramount importance to have agood set of Ward identities to start from. For the construction
of the actionΣ, one should keep in mind the limits to the ordinary Gribov-Zwanziger case and to the Yang-Mills action
with the inclusion of the glueball term. It is logical that anidentity which plays a crucial role in one of the two limit
cases, should not be broken by the actionΣ, asΣ can be seen as an enlargement of the two limit cases. This is the reason
why we have introducedSext,2. Without the auxiliary sourcesXi andYi , the extra integrated Ward identity (42) and the
integrated Ward identity (43) are broken, and without thesetwo identities one cannot prove the renormalizability of the
action in an algebraic way. Let us also mention that in the ordinary Gribov-Zwanziger case, we have two extra linearly

8



broken constraints, belonging to the set of Ward identitiesin equation (40). However, it is not a problem that these two
identities are broken, as the other two linearly broken constraints in equation (40) turn out to be equivalent at the level of
the algebraic renormalization, namely: they have the same effect on the counterterm.

Subsequently, we are ready to turn to quantum level. The third step is to characterize the most general integrated local
countertermΣc which can be freely added to all orders of perturbation theory. Σc is however restricted due to the exis-
tence of the Ward identities. Let us investigate these restrictions a bit closer. The classical action changes under quantum
corrections according to

Σ → Σ+hΣc , (45)

wherebyh is the perturbation parameter. Demanding that the perturbed action(Σ + hΣc) fulfills the same set of Ward
identities obeyed byΣ, see [37], it follows that the countertermΣc is constrained by:

1. The linearized Slavnov-Taylor identity:
BΣΣc = 0, (46)

whereBΣ is the nilpotent linearized Slavnov-Taylor operator,

BΣ =
Z

ddx

(
δΣ

δKa
µ

δ
δAa

µ
+

δΣ
δAa

µ

δ
δKa

µ
+

δΣ
δLa

δ
δca +

δΣ
δca

δ
δLa +ba δ

δca + ϕa
i

δ
δωa

i
+ ωa

i
δ

δϕa
i

+Mai
µ

δ
δUai

µ
+Nai

µ
δ

δVai
µ

+ λ
δ

δη
+Yi δ

δXi

)
,

and
BΣBΣ = 0. (47)

2. TheU( f ) invariance:

Ui j Σc = 0. (48)

Ui j is given in expression (35).

3. The Landau gauge condition

δΣc

δba = 0. (49)

4. The modified antighost equation:

δΣc

δca + ∂µ
δΣc

δKa
µ
− ∂µ

(
η

δΣc

δKa
µ

)
= 0. (50)

5. The ghost Ward identity:
G aΣc = 0, (51)

with

G a =

Z

ddx

(
δ

δca +g fabc

(
cb δ

δbc + ϕb
i

δ
δωc

i
+ ωb

i
δ

δϕc
i
+Vbi

µ
δ

δNci
µ

+Ubi
µ

δ
δMci

µ

))
. (52)

6. The linearly broken local constraints:

δΣc

δϕai + ∂µ
δΣc

δMai
µ

= 0,

δΣc

δωai + ∂µ
δΣc

δNai
µ
−g fabcωbi δΣc

δbc = 0. (53)
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7. The exactR i j symmetry:
R i j Σc = 0. (54)

8. The extra integrated Ward identity:

Z

ddx

(
δ

δλ
−η

δ
δλ

+ca δ
δba +Uai

µ
δ

δMai
µ

+ ωa
i

δ
δϕa

i
−Xi

δ
δYi

)
Σc = 0. (55)

9. The integrated Ward Identity:

Z

ddx

(
ca δ

δωai + ωai δ
δca +Uai

µ
δ

δKa
µ
−ηUai

µ
δ

δKa
µ
−λ

δ
δYi

)
Σc = 0. (56)

10. TheX-andY-Ward identities:
Z

ddx

[
(1−η)

δ
δXi −λ

δ
δYi + ωa

i
δ

δca + ϕa
i

δ
δba

]
Σc = 0,

Z

ddx

[
(1−η)

δ
δYi + ωa

i
δ

δba

]
Σc = 0. (57)

At this point, we are ready to determine the most general integrated local polynomialΣc in the fields and external sources
of dimension bounded by four and with zero ghost number, limited by the constraints (46)–(57). The linearized Slavnov-
Taylor identity plays an important role in simplifying the form of the counterterm. Indeed, the counterterm can be param-
eterized as follows:

Σc = (BΣ closed but not exact part)︸ ︷︷ ︸
Σc

1

+BΣ∆−1
︸ ︷︷ ︸

Σc
2

, (58)

wherebyΣc
1 is a cohomologically non-trivial part whileΣc

2 represents the cohomologically trivial part.∆−1 is the most
general local polynomial with dimension 4 and ghost number−1. One can prove that all fields and sources belonging to
a doublet can only enter the cohomologically trivial part [37]. This is exactly the reason why we have opted to introduce
the sourceη, which is coupled to the BRST exact term, as part of a doublet.In this way, the sourceη can only enter the
trivial part, and turns out to be useful to explicitly prove the upper triangular form of the mixing matrix in equation (24).
One can now check that the closed but not exact part is given by

Σc
1 = a0SYM +b0ŜYM , (59)

whereby

ŜYM =
Z

ddxq
1
4

Fa
µνFa

µν , (60)
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and the trivial part is given by the following rather lengthyexpression:

Σc
2 = BΣ

Z

ddx

{[
a1(K

a
µ + ∂µca)Aa

µ +a2Laca +a3U
a
µi ∂µϕa

i +a4Va
µi ∂µωa

i +a5ωa
i ∂2ϕa

i

+a6 Ua
µiV

a
µi +a7g fabcUa

µi ϕ
b
i Ac

µ+a8g fabcVa
µi ω

b
i Ac

µ+a9g fabcωa
i Ac

µ∂µϕb
i +a10g fabcωa

i (∂µAc
µ)ϕ

b
i

+a11X
iωa

i ∂Aa
µ+a12X

i∂ωa
i Aa

µ+a13X
iϕa

i ca +a14g fabcX
iωa

i ωb
j ωc

j +a′14g fabcX
iωa

j ωb
i ωc

j

+a15X
iωa

i ba +a16X
iU ia

µ Aa
µ+a17g fabcX

iωa
i ϕb

j ϕc
j +a′17g fabcX

iωa
j ϕb

i ϕc
j ++a′′17g fabcX

iωa
j ϕb

j ϕc
i

+a18g fabcX
iωa

i cbcc +a19X
iXiϕa

j ω
a
j +a′19X

iX jϕa
i ωa

j +a20X
iY jωi

aω j
a +a21g fabcY

iωa
i ωb

j ϕ
c
j

+a′21g fabcY
iωa

j ω
b
j ϕ

c
i +a22Y

iωa
i ca
]

+q

[
b1(K

a
µ + ∂µca)Aa

µ+c1ca∂µAa
µ+b2L

aca +b3U
a
µi ∂µϕa

i +c3∂µU
a
µiϕ

a
i +b4V

a
µi ∂µωa

i +c4∂µV
a
µi ω

a
i

+b5ωa
i ∂2ϕa

i +c5∂µωa
i ∂µϕa

i +d5∂2ωa
i ϕa

i +b6Ua
µiV

a
µi +b7g fabcUa

µi ϕ
b
i Ac

µ +b8g fabcVa
µi ω

b
i Ac

µ

+b9g fabcωa
i Ac

µ∂µϕb
i +c9g fabcωa

i (∂µAc
µ)ϕb

i +d9g fabc∂µωa
i Ac

µϕb
i +b10X

iωa
i ∂Aa

µ +c10X
i∂ωa

i Aa
µ

+d10∂Xiωa
i Aa

µ+b11X
iϕa

i ca +b12g fabcX
iωa

i ωb
j ω

c
j +b′12g fabcX

iωa
j ω

b
i ωc

j +b13X
iωa

i ba +b14X
iU ia

µ Aa
µ

+b15g fabcX
iωa

i ϕb
j ϕ

c
j +b′15g fabcX

iωa
j ϕ

b
i ϕc

j +b′′15g fabcX
iωa

j ϕ
b
j ϕ

c
i +b16g fabcX

iωa
i cbcc +b17X

iXiϕa
j ω

a
j

+b′17X
iX jϕa

i ωa
j +b18X

iY jωi
aω j

a +b19g fabcY
iωa

i ωb
j ϕ

c
j +b′19g fabcY

iωa
j ω

b
j ϕ

c
i +b20Y

iωa
i ca
]

+η
[
e1Ka

µAa
µ +e′1∂µcaAa

µ+ f1ca∂µAa
µ+e2Laca +e3U

a
µi ∂µϕa

i + f3∂µU
a
µiϕa

i +e4V
a
µi ∂µωa

i + f4∂µV
a
µi ωa

i

+e5ωa
i ∂2ϕa

i + f5∂µωa
i ∂µϕa

i +g5∂2ωa
i ϕa

i +e6Ua
µiV

a
µi +e7g fabcUa

µi ϕ
b
i Ac

µ+e8g fabcVa
µi ω

b
i Ac

µ

+e9g fabcωa
i Ac

µ∂µϕb
i + f9g fabcωa

i (∂µAc
µ)ϕ

b
i +g9g fabc∂µωa

i Ac
µϕb

i +e10X
iωa

i ∂Aa
µ+ f10X

i∂ωa
i Aa

µ

+g10∂Xiωa
i Aa

µ+e11X
iϕa

i ca +e12g fabcX
iωa

i ωb
j ω

c
j +e′12g fabcX

iωa
j ω

b
i ωc

j +e13X
iωa

i ba +e14X
iU ia

µ Aa
µ

+e15g fabcX
iωa

i ϕ j
bϕ j

c +e′15g fabcX
iωa

j ϕ
b
i ϕc

j +e′′15g fabcX
iωa

j ϕ
b
j ϕ

c
i +e16g fabcX

iωa
i cbcc +e17X

iXiϕa
j ω

a
j

+e′17X
iX jϕa

i ωa
j +e18X

iY jωi
aω j

a +e19g fabcY
iωa

i ωb
j ϕ

c
j +e′19g fabcY

iωa
j ω

b
j ϕ

c
i +e20Y

iωa
i ca
]

λ
[
h1g fabcX

iϕa jωb
i ωc

j +h′1g fabcX
iϕaiωb

j ωc
j +h2X

icaωa
i +h3ωa

i ωb
j ϕa

i ϕb
j +(variants ofh3)

]}
. (61)

The coefficientsai , a′i, etc. are a priori free parameters.

As the attentive reader might have noticed, we did not include terms of the form(q2 . . .), (η2 . . .), (qη . . .), (q3 . . .),
(λq2 . . .) etc., into the counterterm. However, by just looking at the dimensionality, the ghost number and the constraints
on the counterterm, one might conclude that certain terms ofquadratic and higher order in the sources (q, η, λ) are per-
fectly allowed. One can imagine that an infinite tower of counterterms would then be generated and thence it would be
impossible to prove the renormalizability of the action as new divergences are always being generated, which cannot be
absorbed in terms already present in the classical action. However, we can give a simple argument why one may omit
this class of terms with the help of an example. Assume that wewould introduce the following term of orderq2 in the
action,

∼

Z

ddxq2 F2
µν

4
. (62)

Subsequently, when calculating the correlator, this term would give rise to an extra contact term contribution,
[

δ
δq(z)

δ
δq(y)

Z

[dφ]e−Σ
]

q=0
=

〈
F2(z)

4
F2(y)

4

〉

︸ ︷︷ ︸
term due to part inq

+δ(y−z)

〈
F2(y)

2

〉

︸ ︷︷ ︸
term due to part inq2

. (63)

Eventually, we are only interested in the correlator forz 6= y and therefore we can neglect the term (62) quadratic in
the sourceq. Moreover, when studying the casez= y, one should also couple a source to the novel composite operator
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F4 ≡ F2
µνF2

αβ, which is not in our current interest. We can repeat this argument for all the terms which arezero in the
physical limit. Therefore, this argument is not only valid for the dimensionless sourcesq, η andλ, but also for the massive
sourcesKµ, Lµ, Xi , Yi . Though, some care needs to be taken. Let us explain this again with an example. The modified
antighost equation has the following form:

δΣc

δca + ∂µ
δΣc

δKa
µ
− ∂µ

(
η

δΣc

δKa
µ

)
= 0. (64)

In this case, due to the term∂µ
δΣc

δKa
µ
, one compares terms of quadratic order in the sources∼ qKµ . . ., with terms of first

order in the sources∼ q. . .. This identity can never be fulfilled is one immediately omits all terms of quadratic order inKa
µ.

Therefore, we have chosen to keep all the possible combinations of higher order in the massive sources in the counterterm
(61) as there are only a finite number of combinations, while keeping in mind the higher order combinations of the di-
mensionless sources. Only after imposing all the constraints, we can then safely neglect the terms quadratic in the sources.

With the previous remark in mind, we can now impose all the constraints (48)-(57) on the counterterm, which is a very
cumbersome job. We ultimately find

Σc = a0SYM +b0ŜYM +a1

Z

ddx

(
Aa

µ
δSYM

δAa
µ

+Aa
µ

δŜYM

δAa
µ

+ ∂µca∂µca +Ka
µ∂µca +Mai

µ ∂µϕai
µ −Uai

µ ∂µωai
µ

Nai
µ ∂µωai

µ +Vai
µ ∂µϕai

µ + ∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc

−g fabcV
ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+b1

Z

ddxq

(
Aa

µ
δSYM

δAa
µ

+ ∂µca∂µca +Ka
µ∂µca +Mai

µ ∂µϕai
µ −Uai

µ ∂µωai
µ +Nai

µ ∂µωai
µ +Vai

µ ∂µϕai
µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc−g fabcV

ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+a1

Z

ddxη

(
∂µca∂µca +Mai

µ ∂µϕai
µ −Uai

µ ∂µωai
µ +Nai

µ ∂µωai
µ +Vai

µ ∂µϕai
µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc−g fabcV

ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+a1

Z

ddxλ

(
Uai

µ ∂µϕai +Vai
µ ∂µωai + ∂µωai∂µϕai +Uai

µ Vai
µ

)
−a1

Z

ddx

(
Xi∂µωai∂µca

)
. (65)

Only now, we can discard the term∼ qKa
µ∂µca as it is of quadratic order in the sources. One could argue that we can

also neglect terms of higher order inUai
µ and Nai

µ . However, both sources belong to a BRST doublet. Moreover, the
corresponding partner sources,Mai

µ ,Vai
µ , acquire a nonzero value in the physical limit, and it would be impossible to write

the BRST exact term in our starting actionΣglue (see expression (26)) as ans-variation when neglecting these kind of
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terms. In summary, the expression

Σc = a0SYM +b0ŜYM +a1

Z

ddx

(
Aa

µ
δSYM

δAa
µ

+Aa
µ

δŜYM

δAa
µ

+ ∂µca∂µca +Ka
µ∂µca +Mai

µ ∂µϕai
µ −Uai

µ ∂µωai
µ

Nai
µ ∂µωai

µ +Vai
µ ∂µϕai

µ + ∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc

−g fabcV
ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+b1

Z

ddxq

(
Aa

µ
δSYM

δAa
µ

+ ∂µca∂µca +Mai
µ ∂µϕai

µ −Uai
µ ∂µωai

µ +Nai
µ ∂µωai

µ +Vai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc−g fabcV

ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+a1

Z

ddxη

(
∂µca∂µca +Mai

µ ∂µϕai
µ −Uai

µ ∂µωai
µ +Nai

µ ∂µωai
µ +Vai

µ ∂µϕai
µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc−g fabcV

ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+a1

Z

ddxλ

(
Uai

µ ∂µϕai +Vai
µ ∂µωai + ∂µωai∂µϕai +Uai

µ Vai
µ

)
−a1

Z

ddx

(
Xi∂µωai∂µca

)
, (66)

gives the general counterterm compatible with all Ward identities.

We still need to introduce the operators belonging to the classC3, which are related to the equations of motion, see
section 3.1. Therefore, the next step is to perform a linear shift on the gluon fieldAa

µ in the actionΣ

Aa
µ → Aa

µ+ αAa
µ , (67)

wherebyα is a dimensionless new source. As this shift corresponds to aredefinition of the gluon field it has to be
consistently done in the starting action as well as in the counterterm. Later on, we shall see that introducing the relevant
gluon equation of motion operator through this shift, will allow us to uncover the finiteness of this kind of operator.
Performing the shift in the classical action yields the following shifted actionΣ′

Σ′ = SYM +

Z

ddx
(

ba∂µAa
µ +ca∂µDab

µ cb
)

+

Z

ddx

(
−Ka

µ (Dµc)a +
1
2

gLa f abccbcc
)

+

Z

ddx
(

ϕa
i ∂νDab

ν ϕb
i −ωa

i ∂νDab
ν ωb

i −g∂νωa
i f abmDbd

ν cdϕm
i

)

+

Z

ddx
(
−Mai

µ Dab
µ ϕb

i −gUai
µ f abcDbd

µ cdϕc
i +Uai

µ Dab
µ ωb

i

−Nai
µ Dab

µ ωb
i −Vai

µ Dab
µ ϕb

i +gVai
µ f abcDbd

µ cdωc
i −Mai

µ Vai
µ +Uai

µ Nai
µ

)

+

Z

ddxqFa
µνFa

µν +

Z

ddxλ
[
∂µcaAa

µ + ∂ω∂ϕ+g fakb∂ωaAkϕb +UaDabϕb +VaDabωb +UV
]

+

Z

ddxη
[
∂µbaAa

µ+ ∂µcaDab
µ cb + ∂ϕ∂ϕ− ∂ω∂ω+g fakb∂ϕaAkϕb +g fakb∂ωaDkdcdϕb−g fakb∂ωaAkωb

+Mai
µ (Dµϕi)

a +gUai
µ f abc(Dµc)b ϕc

i −Uai
µ (Dµωi)

a +Nai
µ (Dµωi)

a−gVai
µ f abc(Dµc)b ωc

i +Vai
µ (Dµϕi)

a

+Mai
µ Vai

µ −Uai
µ Nai

µ

]
+

Z

ddx
(
YiA

a
µ∂ωa

i −XiD
ab
µ cb∂µωa

i +XiA
a
µ∂µϕa

i

)

+

Z

ddxαAa
µ

δSYM

δAa
µ

+

Z

ddxα
{
−∂µbaAa

µ+g fakbA
k
µcb∂µca

}

+

Z

ddxα
[
−g fakb∂µϕa

i Ak
µϕb +g fakb∂µωa

i Ak
µωb−g2 fabmfbkd∂µωaϕmAk

µcd
]

+
Z

ddxα
[
−g fakbM

a
i Ak

µϕb
i +g fakbU

a
i Ak

µωb
i −g fakbN

a
i Ak

µωb
i −g fakbV

a
i Ak

µϕb
i

]

−

Z

ddxα
[
g2 fabcfbkdU

a
i ϕcAkcd +g2 fabcfbkdV

aωcAkcd
]

. (68)
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Notice that we have neglected again higher order terms in thesources∼ (αη . . .),∼ (αλ . . .) and∼ (αq. . .) as the argument
(63) is still valid. The corresponding countertermΣ′c reads:

Σ′c = a0SYM+b0ŜYM+a1

Z

ddx

(
Aa

µ
δSYM

δAa
µ

+Aa
µ

δŜYM

δAa
µ

+ ∂µca∂µca +Ka
µ∂µca +Mai

µ ∂µϕai
µ −Uai

µ ∂µωai
µ

Nai
µ ∂µωai

µ +Vai
µ ∂µϕai

µ + ∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc

−g fabcV
ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+b1

Z

ddxq

(
Aa

µ
δSYM

δAa
µ

+ ∂µca∂µca +Mai
µ ∂µϕai

µ −Uai
µ ∂µωai

µ +Nai
µ ∂µωai

µ +Vai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc−g fabcV

ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+a1

Z

ddxη

(
∂µca∂µca +Mai

µ ∂µϕai
µ −Uai

µ ∂µωai
µ +Nai

µ ∂µωai
µ +Vai

µ ∂µϕai
µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ +Vai
µ Mai

µ −Uai
µ Nai

µ −g fabcU
ia
µ ϕbi∂µcc−g fabcV

ia
µ ωbi∂µcc−g fabc∂µωaϕbi∂µcc

)

+a1

Z

ddxλ

(
Uai

µ ∂µϕai +Vai
µ ∂µωai + ∂µωai∂µϕai +Uai

µ Vai
µ

)
−a1

Z

ddx

(
Xi∂µωai∂µca

)

+a0

Z

ddx

(
αAa

µ
δSYM

δAa
µ

)

+a1

Z

ddxα
(

2Aa
µ∂µ∂νAa

ν −2Aa
µ∂2Aa

µ +9g fabcA
a
µAb

ν∂µAc
ν +4g2 fabcfcdeA

a
µAb

νAd
µAe

ν

)
, (69)

once more dropping higher order terms in the sources.

The final step in the renormalization procedure is to reabsorb the countertermΣ′c into the original actionΣ′,

Σ(g,ω,φ,Φ)+hΣc = Σ(g0,ω0,φ0,Φ0)+O(h2) , (70)

We setφ = (Aa
µ, ca, ca, ba, ϕa

i , ωa
i , ϕa

i , ωa
i ) andΦ = (Kaµ, La, Mai

µ , Nai
µ , Vai

µ , Uai
µ , λ) and we define

g0 = Zgg, φ0 = Z1/2
φ φ , Φ0 = ZΦΦ , (71)

while for the other sources we propose the following mixing matrix



q0

η0

J0



=




Zqq Zqη ZqJ

Zηq Zηη ZηJ

ZJq ZJη ZJJ








q
η
J



 . (72)

If we try to absorb the counterterm into the original action,we easily find,

Zg = 1−h
a0

2
,

Z1/2
A = 1+h

(a0

2
+a1

)
, (73)

and

Z1/2
c = Z1/2

c = Z−1/4
A Z−1/2

g = 1−h
a1

2
,

Zb = Z−1
A ,

ZK = Z1/2
c ,

ZL = Z1/2
A , (74)
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The results (73) are already known from the renormalizationof the original Yang-Mills action in the Landau gauge.
Further, we also obtain

Z1/2
ϕ = Z1/2

ϕ = Z−1/2
g Z−1/4

A = 1−h
a1

2
,

Z1/2
ω = Z−1/2

A ,

Z1/2
ω = Z−1

g ,

ZM = 1−
a1

2
= Z−1/2

g Z−1/4
A ,

ZN = Z−1/2
A ,

ZU = 1+h
a0

2
= Z−1

g ,

ZV = 1−h
a1

2
= Z−1/2

g Z−1/4
A , (75)

which are known from the original Gribov-Zwanziger action,see [15]. In addition, we also find the following mixing
matrix




Zqq Zqη ZqJ

Zηq Zηη ZηJ

ZJq ZJη ZJJ



 =




1+h(b0−a0) 0 0

hb1 1 0
hb1 0 1



 , (76)

while for theZ-factor ofλ we have

Zλ = Z−1/2
c Z−1/2

A = Z1/2
g Z−1/4

A . (77)

Also this part was already known, see [23]. So far, we have proven that the two limit cases are at least correct. Finally, we
find the new results

ZY = ZgZ−1/2
A ,

ZX = Z1/2
g Z−1/4

A . (78)

In summary, the actionΣ′ is renormalizable. Moreover, we have only 4 arbitrary parameters,a0, a1, b0, b1, which is the
same number as in the limit case{ϕ,ϕ,ω,ω,U,V,N,M}→ 0, i.e. the Yang-Mills case with the introduction of the glueball
operator∼ F2

µν [23]. This is already a remarkable fact.

3.3 Inclusion of the glueball operator in the Refined Gribov-Zwanziger action

In analogy with [22, 21] we shall add the two dimensional massterm∼ (ϕa
i ϕa

i −ωa
i ωa

i ) to the actionΣglue in equation
(26),

ΣRglue = Σglue+ Σϕϕ + Σen, (79)

whereby

Σϕϕ =

Z

ddx(s(−Jωa
i ϕa

i )) =

Z

ddx(−J(ϕa
i ϕa

i −ωa
i ωa

i )) ,

Σen =

Z

ddxςΘJ , (80)

with J andθ new sources, andς the parameter already defined in equation (22). In order to agree with the physical action
(21), we define the following physical limit,

Θ|phys= 2
d(N2−1)√

2g2N
γ2 . (81)

We further definesJ= 0 andsΘ = 0, hence the BRST invariance is guaranteed.
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Let us now investigate the renormalizability of actionΣRglue. We can go through the same steps as in the previous sec-
tion. Therefore, we again add the two external pieces,Sext,1 andSext,2 as defined in equation (27) and (29), to the action
ΣRglue

ΣR = ΣRglue+Sext,1 +Sext,2 . (82)

Subsequently, one can easily check that all Ward identities(34) - (41) and (44) remain unchanged up to potential harmless
linear breaking terms. Therefore, the constraints (48) - (54) and (57) remain valid. Unfortunately, the extra integrated
Ward identity (42) and the integrated Ward identity (43) arebroken due to the introduction of the mass term. However, the
mass term we have added is not a new interaction as it is only quadratic in the fields. Therefore, it cannot introduce new
divergences to the massless theoryΣ, and it can only influence its own renormalization3 as well as potentially vacuum
terms, i.e. pure source terms. Also, next to Ward identities(34) - (41) and (44), we have a new identity

δΣR

δΘ
= ςJ , (83)

which is translated to the following constraint at the levelof the counterterm,

δΣc
R

δΘ
= 0. (84)

As a consequence,Σc
R is independent from the sourceΘ. Therefore, it follows that the form of the countertermΣc

R can be
written as

Σc
R = Σc + Σc

J , (85)

wherebyΣc is the counterterm (66) ofΣ andΣc
J is depending onJ. One can now easily check thatΣc

J = κJ2, with κ a new
parameter as this is the only possible combination with the sourceJ, which does not break the constraints (46) - (54) and
(57).

κ is in fact a redundant parameter, as no divergences inJ2 will occur, as explained in [22]. Therefore, the counterterm Σc
R

is actually equal toΣc. Defining

J0 = ZJJ , (86)

we find

ZJ = Z−1
ϕ = ZgZ1/2

A , (87)

and we have proven the renormalizability of the actionΣc′.

4 The operator mixing matrix to all orders

4.1 Preliminaries

Let us return to the mixing matrix of the sourcesq, η andJ and pass to the the corresponding operators. We have found
that 


q0

η0

J0



=




Zqq 0 0
ZJq 1 0
ZJq 0 1








q
η
J



 . (88)

We shall further need the inverse of this matrix,




q
η
J



=





1
Zqq

0 0

−
ZJq
Zqq

1 0

−
ZJq
Zqq

0 1








q0

η0

J0



 . (89)

3. We employ massless renormalization schemes.
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We can write the final actionΣ′ from equation (68) in a more condensed form as

Σ′ = ΣGZ +Sext,1 +Sext,2 +

Z

ddx(qF + ηE + αH )+

Z

ddxλN , (90)

whereby we have defined the operators

F =
1
4

Fa
µνFa

µν ,

E = sN ,

H = Aa
µ
SGZ

Aa
µ

, (91)

with

N =
[
∂µcaAa

µ+ ∂ω∂ϕ+g fakb∂ωaAkϕb +UaDabϕb +VaDabωb +UV
]

. (92)

It is then an easy task to construct the corresponding mixingmatrix for the operators themselves. We recall that insertions
of an operator can be obtained by taking derivatives of the generating functionalZc(q,η,J) w.r.t. to the appropriate source.
For example,

F0 ∼
δZc(q,η,J)

δq0
=

δq
δq0

δZc(q,η,J)

δq
+

δη
δq0

δZc(q,η,J)

δη
+

δJ
δq0

δZc(q,η,J)

δJ
, (93)

and thus

F0 =
1

Zqq
F −

ZJq

Zqq
G −

ZJq

Zqq
H , (94)

and similarly forE0 andH0. Henceforth, we find



F0

E0

H0



 =




Z−1

qq −ZJqZ−1
qq −ZJqZ−1

qq
0 1 0
0 0 1








F

E

H



 . (95)

This is a nice result as we recover the expected upper triangular form. In addition, asE has aZ-factor equal to 1, we
also find that the BRST exact operatorE does not mix withH , although this mixing would in principle be allowed. This
can be understood as follows. The integrated BRST exact operatorE is in fact proportional to a sum of four (integrated)
equations of motion terms and two other terms,

Z

d4x
[
∂µbaAa

µ+ ∂µcaDab
µ cb + ∂ϕ∂ϕ− ∂ω∂ω+g fakb∂ϕaAkϕb +g fakb∂ωaDkdcdϕb−g fakb∂ωaAkωb +Mai

µ Dab
µ ϕb

i

+gUai
µ f abcDab

µ cbϕc
i −Uai

µ Dab
µ ωb

i +Nai
µ Dab

µ ωb
i −gVai

µ f abcDbd
µ cdωc

i +Vai
µ Dab

µ ϕb
i +Mai

µ Vai
µ −Uai

µ Nai
µ

]

= −

Z

d4x

(

ba δΣGZ

δba +ca δΣGZ

δca + ϕa δΣGZ

δϕa + ωa δΣGZ

δωa +Mai
µ

δΣGZ

δMai
µ

+Uai
µ

δΣGZ

δUai
µ

)

, (96)

and therefore, likeH , it does not mix with the other operators. Notice that we can rewrite the integrated BRST operator
in two other forms:

(96) = −

Z

d4x

(
ba δΣGZ

δba +ca δΣGZ
δca + ϕa δΣGZ

δϕa + ωa δΣGZ

δωa +Nai
µ

δΣGZ

δNai
µ

+Vai
µ

δΣGZ

δVai
µ

)
, (97)

or

(96) = −

Z

d4x

(
ba δΣGZ

δba +ca δΣGZ
δca + ϕa δΣGZ

δϕa + ωa δΣGZ

δωa +Mai
µ

δΣGZ

δMai
µ

+Nai
µ

δΣGZ

δNai
µ

)
. (98)

Remark
We can also use the refined actionΣRGZ instead ofΣGZ. We defineΣRGZ as

ΣRGZ = ΣGZ + Σϕϕ + Σen, (99)
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wherebyΣϕϕ andΣen are defined in equation (80). ReplacingΣGZ by ΣRGZ does not alter equation (95), but it does slightly
modify expression (96),

Z

d4xE = −

Z

d4x

(
ba δΣRGZ

δba +ca δΣRGZ

δca + ϕa δΣRGZ

δϕa + ωa δΣRGZ

δωa +Mai
µ

δΣRGZ

δMai
µ

+Uai
µ

δΣRGZ

δUai
µ

−J
δΣRGZ

δJ
+ Θ

δΣRGZ

δΘ

)
,

(100)
and analogously for expression (97) and (98).

4.2 The physical limit

In the next subsection, we shall work in the physical limit asour final intention is to examinen-point functions with the
(Refined) Gribov-Zwanziger action itself. In the physical limit, E becomes:

E |phys = ∂µbaAa
µ+ ∂µcaDab

µ cb + ∂µϕa
i Dab

µ ϕb
i − ∂µωa

i Dab
µ ωb

i +g fabc∂µωa
i Dbd

µ cdϕc
i + γ2g fabcAa

µϕbc
µ + γ2g fabcAa

µϕbc
µ

+d
(
N2−1

)
γ4 . (101)

From this point, we can omit the constant termd
(
N2−1

)
γ4 as it shall not play a role in the calculation of the glueball

correlator. Later, we shall determine the renormalizationgroup invariantR (x) which containsF2
µν(x). As E mixes with

F2
µν(x), this renormalization group invariant shall also contain this constant term. However, a constant term can never

contribute to the final glueball correlator〈R (x)R (y)〉 as it can never help to produce connected diagrams between the two
space time pointsx andy. Therefore, we shall simplify the calculations by omittingthis term already from this point.

In the physical limitH is given by

H
∣∣
phys = Aa

µ
δSGZ

δAa
µ

, (102)

wherebySGZ is the physical Gribov-Zwanziger action (8). Naturally, the mixing matrix (95) stays valid.

4.3 The mixing matrix to all orders

It this section, we shall determine the mixing matrix (95) toall orders. This proof is very elegant as it does not require
to calculate any loop diagrams, and it is purely based on algebraic manipulations. We shall extend the proof given in
[23], which is based on [38]. Moreover, as a byproduct, the proof shall also reveal some identities between the anomalous
dimensions of the different fields, which can serve as a checkon relations as in (74) and (75). We shall directly work with
the physical actionSGZ. In the end, we shall also look at the Refined Gribov-Zwanziger action,SRGZ.

We start our analysis with the following genericn-points function

G n(x1, . . . ,xn) =
〈
φi(x1) . . .φ j(xn)

〉
=

Z

[dφ]φi(x1) . . .φ j(xn)e−SGZ , (103)

wherebyφi , i = 1. . .8 stands for one of the eight fields(Aa
µ, ca, ca, ba, ϕab

µ , ωab
µ , ϕab

µ , ωa
i ), i.e φ1 = Aµ, . . ., φ8 = ωab

µ . We
shall immediately omit the vacuum termγ4(N2 − 1)d in the actionSGZ, as it is relevant only for the calculation of the
vacuum energy and not for the calculation ofn-points functions. The total number of fields is given byn,

n =
8

∑
i

ni , (104)

with ni the number of fieldsφi present in then-points function (103). We are therefore considering the path integral for
a random combination of fields. Subsequently, from the definition (103), we can immediately write down the connection
between the renormalized Green function and the bare Green function, which is, in a very condensed notation,

G n =
8

∏
i=1

Z−ni/2
φi
G n

0 . (105)

From the previous equation, we shall be able to fix all the matrix elements of expression (95), based on the knowledge
that dG n

dg2 must be finite in a renormalized theory.
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We shall therefore calculate this quantity. The first step isto apply the chain rule:

dG n

dg2 =
8

∑
j=1




∂Z

−n j /2
φ j

∂g2 ∏
i 6= j

Z−ni/2
φi



G n
0 +

8

∏
i=1

Z−ni/2
φi

[
∂g2

0

∂g2

∂
∂g2

0

+
∂γ2

0

∂g2

∂
∂γ2

0

]
G n

0 . (106)

Next, we need to calculate the derivatives w.r.t.g2.

• Firstly, we need to find∂g2
0/∂g2. We employ dimensional regularization, withd = 4− ε. If we derive

g2
0 = µεZ2

gg2 , (107)

w.r.t. µ andg2, combine these two equations and employ the following definition of theβ-funtion4

µ
∂g2

∂µ
= −εg2 + β(g2) , (108)

we obtain

∂g2
0

∂g2 =
−εg2

0

−εg2 + β(g2)
. (109)

• Secondly, we calculate
∂γ2

0
∂g2 . We start from

γ2
0 = Zγ2γ2 (110)

wherebyZγ2 = ZV = ZM due to the limit (19). Deriving this equation w.r.t.g2 yields

∂γ2
0

∂g2 =
∂Zγ2

∂g2 γ2 =
∂ lnZγ2

∂g2 γ2
0 =

1
µ

∂µ
∂g2µ

∂ lnZγ2

∂µ
γ2
0 =

1
−εg2 + β(g2)

δγ2γ2
0 , (111)

and we have defined the anomalous dimension ofγ2 as

δγ2 = µ
∂ lnZγ2

∂µ
. (112)

• Finally, we search for∂Z
−n j /2
φ j

/∂g2. Applying the chain rule gives

∂Z−n/2
φi

∂g2 = −∏
i

Z−pi/2
φi

Z1/2
φi

∂Z1/2
φi

∂g2 = −∏
i

Z−pi/2
φi

∂ lnZ1/2
φi

∂g2 . (113)

Next, we derive
∂ lnZ

1/2
φi

∂g2 from the definition of the anomalous dimension,

γφi = µ
∂ lnZ1/2

φi

∂µ
= µ

∂g2

∂µ

∂ lnZ1/2
φi

∂g2 =
(
−εg2 + β(g2)

) ∂ lnZ1/2
φi

∂g2 . (114)

From expression (113) and (114), it now follows

∂Z−pi/2
φi

∂g2 = −piZ
−pi/2
φi

γφi

−εg2 + β(g2)
. (115)

4. We have immediately extracted the part inε.
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Inserting equation (109) and (115) into expression (106), we find:

dG n

dg2 =
∏i Z

−ni/2
φi

−εg2+ β(g2)

(
−

8

∑
j=1

n jγφ j − εg2
0

∂
∂g2

0

+ δγ2γ2
0

∂
∂γ2

0

)
G n

0 . (116)

The right hand side still contains bare and therefore divergent quantities. We would like to rewrite all these quantities in
terms of finite quantities so that we can use the finiteness of the left hand side to make observations on the right hand side.
Also, we should rewrite in some manner the numberni as the mixing matrix (95) is obviously independent from these
arbitrary numbers.

Therefore, as a second step, we shall rewrite the right hand side of (116) in terms of a renormalized quantity. Firstly,
we calculate ∂

∂g2
0
G n

0 . Using

∂e−SGZ

∂g2
0

= −

Z

d4y

(
−

1

g2
0

(
F2

0 (y)
4

)
+

1

2g2
0

(
A0(y)

δSGZ

δA0(y)
−b0(y)

δSGZ

δb0(y)
+ ω0(y)

δSGZ

δω0(y)
−ω0(y)

δSGZ

δω0(y)

))
e−SGZ ,

(117)
we can write,

g2
0
dG n

0

dg0
=

Z

d4y

(
G n

0

{
F2

0 (y)

4

}
−

1
2
G n

0

{
A0(y)

δSGZ

δA0(y)

}
+

1
2
G n

0

{
b0(y)

δSGZ

δb0(y)

}
−

1
2
G n

0

{
ω0(y)

δSGZ

δω0(y)

}

+
1
2
G n

0

{
ω0(y)

δSGZ

δω0(y)

})
. (118)

We have introduced a shorthand notation for an insertion in then-points function, e.g.

G n
0

{
F2

0 (y)

4

}
=

〈
F2

0 (y)

4
φi(x1) . . .φ j(zn)

〉
. (119)

Secondly, we analogously find

γ2
0

∂
∂γ2

0

G n
0 =

Z

d4y
(
G n

0

{
γ2
0g0 f abcAa

µ,0ϕbc
µ,0 + γ2

0g0 f abcAa
µ,0ϕbc

µ,0

})
. (120)

Thirdly, we rewriten jG
n
0 by inserting the corresponding counting operator5 into the Green function,

n jG
n
0 =

Z

d4yG n
0

{
φ j

0(y)
δSGZ

δφ j
0(y)

}
. (121)

Inserting (118), (120) and (121) into our main expression (116) results in

dG n

dg2 =
1

−εg2 + β(g2)

Z

ddy

[
−

8

∑
j=1

γφ jG
n
{

φ j
0(y)

δSGZ

δφ j
0(y)

}
− εG n

{
F2

0 (y)
4

}
+

ε
2
G n
{

A0(y)
δSGZ

δA0(y)

}

−
ε
2
G n
{

b0(y)
δSGZ

δb0(y)

}
+

ε
2
G n
{

ω0(y)
δSGZ

δω0(y)

}
−

ε
2
G n
{

ω0(y)
δSGZ

δω0(y)

}

+δγ2G
n
{

γ2
0g0 f abcAa

µ,0ϕbc
µ,0 + γ2

0g0 f abcAa
µ,0ϕbc

µ,0

}]
. (122)

Notice that we have also absorbed the factor∏i Z
−ni/2
φi

into the Green functions, and therefore we can replaceG n
0 again

by G n. Finally, we need to rewrite all the inserted operators in the n-points functionG n in terms of their renormalized
counterparts. For this we return to the mixing matrix (95) and parameterize it as follows




F0

E0

H0



 =




1+ a

ε − b
ε − b

ε
0 1 0
0 0 1








F

E

H



 . (123)

5. It is easily checked that
R

d4yφ j
0

δ
δφ j

0

counts the number ofφ j
0 insertions.
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Here we have displayed the fact that the entries associated with a(g2,ε) andb(g2,ε), which represent a formal power
series ing2, must at least have a simple pole inε. Therefore, we can rewrite

− εF0(y) =
F2

0 (y)

4
= (−ε−a)F (y)+bE (y)|phys+bA(y)

δSGZ

δA(y)
,

H0
∣∣
phys = A0(y)

δSGZ

δA0(y)
= A(y)

δSGZ

δA(y)
, (124)

whereby we recall that we are working in the physical limit and we have replacedH
∣∣
phys by the expression (102).

Subsequently,

γ2
0g0 f abcAa

µ,0ϕbc
µ,0 = γ2g fabcAa

µϕbc
µ ,

γ2
0g0 f abcAa

µ,0ϕbc
µ,0 = γ2g fabcAa

µϕbc
µ , (125)

as one can check with theZ-factors in (75). Finally, all the other operators are equations of motion terms, which appear in
expression (96), (97) and (98) and therefore have the sameZ-factor as the operatorE , i.e.Z = 1. Summarizing, expression
(122) becomes:

dG n

dg2 =
1

−εg2 + β(g2)

Z

ddy

[
(−ε−a)G n{F }+

( ε
2

+b− γA

)
G n
{

A
δSGZ

δA

}
+
(
−

ε
2
− γb−b

)
G n
{

b(y)
δSGZ

δb(y)

}

(−γc−b)G n
{

c(y)
δSGZ

δc(y)

}
− γcG

n
{

c(y)
δSGZ

δc(y)

}
+
(
−

ε
2
− γω

)
G n
{

ω(y)
δSGZ

δω(y)

}

+
( ε

2
− γω

)
G n
{

ω(y)
δSGZ

δω(y)

}
− γϕG

n
{

ϕ(y)
δSGZ

δϕ(y)

}
− γϕG

n
{

ϕ(y)
δSGZ

δϕ(y)

}

+bG n
{

∂µϕa
i Dab

µ ϕb
i − ∂µωa

i Dab
µ ωb

i +g fabc∂µωa
i Dbd

µ cdϕc
i + γ2g fabcAa

µϕbc
µ + γ2g fabcAa

µϕbc
µ

}

+δγ2G
n
{

γ2g fabcAa
µϕbc

µ + γ2g fabcAa
µϕbc

µ

}]
. (126)

where we have immediately taken the full expression ofE |phys in equation (101).

From expression (126), we can determinea(g2,ε) andb(g2,ε). As dG n

dg2 is a finite expression, we know that the right
hand side of equation (126) must also be finite. Therefore, asall the Green functions are expressed in terms of finite
quantities, we can choose a set of linearly independent terms and demand that their coefficients are finite:

G n{F } :
−ε−a

−εg2 + β(g2)
, G n

{
A

δSGZ

δA

}
:

ε/2+b− γA(g2)

−εg2 + β(g2)
, (127a)

G n{b∂µAµ
}

:
− ε

2 − γb−b

−εg2 + β(g2)
, G n

{
ca∂µDab

µ cb
}

:
−γc−b− γc

−εg2 + β(g2)
, (127b)

G n
{

ϕa
i ∂µDab

µ ϕb
i

}
:
−γϕ − γϕ −b

−εg2 + β(g2)
, G n

{
ωa

i ∂µDab
µ ωb

i

}
:
−γω − γω −b
−εg2 + β(g2)

, (127c)

G n
{
−g fabc∂νωa

i Dbd
ν cdϕc

i

}
:
−γc− γω − γϕ + ε

2 −b

−εg2+ β(g2)
, (127d)

G n
{
−γ2g fabcAa

µϕbc
}

:
−γϕ − δγ2 −b

−εg2 + β(g2)
, G n

{
−γ2g fabcAa

µϕbc
}

:
−γϕ − δγ2 −b

−εg2 + β(g2)
. (127e)

We can rewrite the coefficients ofG n{F } andG n
{

AδSGZ
δA

}
in (127a) as

−ε−a
−εg2 + β(g2)

=
1
g2

(1+a/ε)
1−β(g2)/(εg2)

,
ε/2+b− γA(g2)

−εg2 + β(g2)
= −

1
2g2

1+2(b− γA(g2))/ε
1−β(g2)/(εg2)

. (128)

Hence, in order to be finite, we must conclude that

a(g2,ε) = −
β(g2)

g2 ,

b(g2,ε) = γA(g2)−
1
2

β(g2)

g2 . (129)

21



Notice thata andb depends ong2, but not onε. Therefore, the matrix elements of the first row of the parametrization
(140) only display a simple pole inε.

Moreover, from the other equations we shall obtain relations between the anomalous dimensions of the fields and sources.
Let us start with the coefficient ofG n

{
b∂µAµ

}
in equation (127b), yielding

−ε/2−b− γb(g2)

−εg2 + β(g2)
=

1
2g2

1+2(b+ γb(g2))/ε
1−β(g2)/(εg2)

, (130)

which means that

b(g2,ε) = −γb(g
2)−

1
2

β(g2)

g2 . (131)

Inserting the value ofb(g2,ε) from expression (129) gives the following relation

γA + γb = 0. (132)

This relation is a translation of the relationZ1/2
A Z1/2

b = 1 found in equation (74). Indeed, deriving both sides w.r.t.µ
gives

1

Z1/2
A Z1/2

b

µ
∂
∂µ

(
Z1/2

A Z1/2
b

)
= γA + γb = 0. (133)

Analogously, for the coefficient ofG n
{

ca∂µDab
µ cb

}
, we find

b(g2,ε) = −γc− γc , (134)

yielding

γA + γc + γc =
β

2g2 , (135)

which is a translation ofZ1/2
c Z1/2

c Z1/2
A Zg = 1 asµdZg

dµ = − β
2g2 . Next, the coefficients of (127c) and (127d) lead to

γϕ + γϕ + γA =
β

2g2 , γω + γω + γA =
β

2g2 , γc + γω + γϕ + γA =
β
g2 , (136)

stemming from

Z1/2
ϕ Z1/2

ϕ Z1/2
A Zg = 1, Z1/2

ω Z1/2
ω Z1/2

A Zg = 1, Z1/2
c Z1/2

ω Z1/2
ϕ Z1/2

A Zg = 1. (137)

These relations originate from the relations derived in (74) and (75). Finally, the coefficients in equation (127e) are finite
if

− γϕ − δγ2 = − γϕ − δγ2 = b = γA(g2)−
1
2

β(g2)

g2 , (138)

or equivalently

Z1/2
ϕ Z1/2

A ZgZγ2 = 1, Z1/2
ϕ Z1/2

A ZgZγ2 = 1, (139)

which is also fulfilled asZγ2 = ZV = Z−1/2
g Z−1/4

A .

In summary, we have determined to all orders the mixing matrix (95). For notational simplicity, we take the value (134)
for b and we use the equalityγc = γc:

Z =




1− β(g2)

εg2
2γc
ε

2γc
ε

0 1 0
0 0 1



 . (140)

We have encountered numerous checks which show the consistency of our results.
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Remark
This matrix is also valid for the refined actionSRGZ. One can repeat the proof by replacingSGZ with SRGZ and by adding
the following term inM2 = J to the game,

Sϕϕ = −M2
Z

ddx(ϕa
i ϕa

i −ωa
i ωa

i ) , (141)

see equation (22). In the end, expression (126) will collectan extra term

dG n

dg2 =
1

−εg2 + β(g2)

Z

ddy

[
(−ε−a)G n{F }+

( ε
2

+b− γA

)
G n
{

A
δSRGZ

δA

}
+
(
−

ε
2
− γb−b

)
G n
{

b(y)
δSRGZ

δb(y)

}

(−γc−b)G n
{

c(y)
δSGZ

δc(y)

}
− γcG

n
{

c(y)
δSGZ

δc(y)

}
+
(
−

ε
2
− γω

)
G n
{

ω(y)
δSGZ

δω(y)

}

+
( ε

2
− γω

)
G n
{

ω(y)
δSGZ

δω(y)

}
− γϕG

n
{

ϕ(y)
δSGZ

δϕ(y)

}
− γϕG

n
{

ϕ(y)
δSGZ

δϕ(y)

}

+bG n
{

∂µϕa
i Dab

µ ϕb
i − ∂µωa

i Dab
µ ωb

i +g fabc∂µωa
i Dbd

µ cdϕc
i + γ2g fabcAa

µϕbc
µ + γ2g fabcAa

µϕbc
µ

}

+δγ2G
n
{

γ2g fabcAa
µϕbc

µ + γ2g fabcAa
µϕbc

µ

}
+ δM2G

n{M2(ϕϕ−ωω)
}
]

, (142)

where we have introduced the anomalous dimension ofM2,

δM2 = µ
∂ lnZM2

∂µ
. (143)

This leads to the following extra coefficients

G n{−M2ϕa
i ϕa

i

}
:
−γϕ − γϕ − δM2

−εg2 + β(g2)
, G n{M2ωa

i ωa
i

}
:
−γω − γω − δM2

−εg2+ β(g2)
. (144)

so that

γϕ + γϕ + δM2 = 0, γω + γω + δM2 = 0, (145)

or equivalently

Z1/2
ϕ Z1/2

ϕ ZM2 = 1, Z1/2
ω Z1/2

ω Z1/2
M2 = 1, (146)

which is correct asZJ = ZM2 = ZgZ1/2
A , see equation (87). All the other relations stay valid of course.

5 The glueball correlator

5.1 A renormalization group invariant

As the final step of our analysis, we shall try to determine a renormalization group invariant operator which contains

F ≡
F2

µν(x)
4 . This is useful as we would want to obtain a renormalization group invariant estimate for the the glueball mass,

i.e. the pole of the corresponding correlator. This analysis is completely similar to the one presented in [23], due to the
fact that the mixing matrixZ is exactly the same. However, for the benefit of the reader, let us repeat the analysis. We
define the anomalous dimension matrixΓ of the mixing matrixZ as

µ
∂
∂µ

Z = ZΓ . (147)

With the following derivatives,

µ
∂
∂µ

(
1−

β/g2

ε

)
=

1
ε
(εg2−β(g2))

∂(β/g2)

∂g2 ,

µ
∂
∂µ

2γc

ε
=

1
ε
(−εg2 + β(g2))

∂2γc

∂g2 , (148)
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we obtain

Γ =




g2 ∂(β/g2)

∂g2 −2g2 ∂γc
∂g2 −2g2 ∂γc

∂g2

0 0 0
0 0 0



 . (149)

Notice that this anomalous dimension matrix is finite, as it should be. This matrixΓ is related to the anomalous dimension
of the operators, since

X0 = ZX ⇒ 0 = µ
∂Z
∂µ

X +Zµ
∂X
∂µ

⇒ µ
∂X
∂µ

= −ΓX , (150)

with

X =




F

E

H



 , X0 =




F0

E0

H0



 . (151)

We now have all the ingredients at our disposal to determine arenormalization group invariant operator. We set

R = kF + ℓE +mH , (152)

with k, ℓ andm functions ofg2, to be chosen in such a way that

µ
∂
∂µ
R = µ

∂k
∂µ
F −kg2∂(β/g2)

∂g2 F +2kg2 ∂γc

∂g2E +2kg2 ∂γc

∂g2H +µ
∂ℓ

∂µ
E +µ

∂m
∂µ
H = 0, (153)

hence





µ∂k
∂µ −kg2 ∂(β/g2)

∂g2 = 0,

µ∂ℓ
∂µ +2kg2 ∂γc

∂g2 = 0,

ℓ = m.

We therefore choose
{

k(g2) = β(g2)
g2 ,

ℓ(g2) = m(g2) = −2γc(g2) ,

and we conclude that

R =
β(g2)

g2 F −2γc(g
2)E −2γc(g

2)H (154)

is a renormalization group invariant scalar operator containing F2
µν, in the case of the Gribov-Zwanziger actionΣGZ as

well as in the case of the refined actionΣRGZ.

5.2 Irrelevance of the terms proportional to the equations of motion

As we have found a renormalization group invariant, the finalgoal [39] shall be that of evaluating the glueball correla-
tor

〈R (x)R (y)〉phys =

〈(
β(g2)

g2 F (x)−2γc(g
2)E (x)−2γc(g

2)H (x)

)(
β(g2)

g2 F (y)−2γc(g
2)E (y)−2γc(g

2)H (y)

)〉

phys
,

(155)
using the (Refined) Gribov-Zwanziger action. However, thisis beyond the scope of the present article as this calculation
shall be far from trivial, even at lowest order.
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As usual the equation of motion terms likeH will not play a role. Let us demonstrate this with a simple example,

〈
F (x)H (y)

〉
phys =

〈
F (x)Aa

µ(y)
δSRGZ

δAa
µ(y)

〉
=

Z

[dΦ]F (x)Aa
µ(y)

δSRGZ

δAa
µ(y)

e−SRGZ = −

Z

[dΦ]F (x)Aa
µ(y)

δe−SRGZ

δAa
µ(y)

=
Z

[dΦ]e−SRGZ
δ
(
Aa

µ(y)F (x)
)

δAa
µ(y)

= . . .δ(x−y)+ δ(0)〈F (x)〉 , (156)

which is zero asx 6= y andδ(0) = 0 in dimensional regularization. Therefore, expression (155) reduces to,

〈R (x)R (y)〉phys =

(
β(g2)

g2

)2

〈F (x)F (y)〉+
(
2γc(g

2)
)2
〈E (x)E (y)〉phys

−2γc(g
2)

β(g2)

g2

(
〈F (x)E (y)〉phys+ 〈E (x)F (y)〉phys

)
. (157)

6 Summary and discussion of the relevance of the soft BRST breaking

In this paper, we have scrutinized the glueball operatorF ≡
F2

µν
4 using the (Refined) Gribov-Zwanziger actionSGZ (SRGZ).

For this, we have followed the framework of an earlier work [23] where we have investigated this operator for the more
simple case of the usual Yang-Mills gauge theory, quantizedin the Landau gauge. However, this framework is heavily
based on the existence of the BRST symmetry while neitherSGZ nor SRGZ are BRST invariant [22]. Therefore, through-
out the paper, we have relied on the extended modelΣGZ andΣRGZ. With these “enlarged” actions, one can then draw
very similar conclusions as in the ordinary Yang-Mills case. The results of interest, i.e. those for the (Refined) Gribov-
Zwanziger action, then easily follow from these extended models in the physical limit, in which case certain external
sources are assigned a suitable value.

Firstly, the classically gauge invariant operatorF2
µν mixes with two other operators, a BRST exact operator,E = s[∂µcaAa

µ+

∂ω∂ϕ + g fakb∂ωaAkϕb +UaDabϕb +VaDabωb +UV], and an operator proportional to the gluon equation of motion,
H = AδΣGZ

δA = AδΣRGZ
δA . By using the algebraic renormalization procedure, we havedetermined the form of the mixing

matrixZ to all orders,



F0

E0

H0



 =




Z−1

qq −ZJqZ−1
qq −ZJqZ−1

qq
0 1 0
0 0 1








F

E

H



 , (158)

which has an upper triangular form, as required [35, 36].

In a second part of the paper, we have completely fixed all the elements of this mixing matrix, by using only algebraic
arguments. We have found

Z =




1− β(g2)

εg2
2γc(g2)

ε
2γc(g2)

ε
0 1 0
0 0 1



 , (159)

which is completely analogous as in the case of the ordinary Yang-Mills theory [23]. This is already a remarkable fact.
In addition, we have also encountered numerous checks on ourresults as we have recovered multiple known relations
between the anomalous dimensions of all the fields and sources.

In the final part, we have determined a renormalization groupinvariant includingF2
µν, given by

R =
β(g2)

g2 F −2γc(g
2)E −2γc(g

2)H , (160)

which is the main result of this paper. This operator would then be a good point to start the study of the (lightest) scalar
glueball from, by means of the correlator〈R (x)R (y)〉phys [39].
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In standard Yang-Mills gauge theories, gauge invariant operatorsF only mix with BRST exact and equation of mo-
tion type terms. While the latter always yield trivial information at the level of correlators, the BRST exact pieces drop
out due to the BRST invariance of the gauge invariant operator F and of the vacuum. In the Gribov-Zwanziger approach,
the situation gets more complicated due to the breaking of the BRST symmetry6. In the physical limit,E is no longer a
BRST invariant operator. In addition, the BRST symmetry is softly broken. Therefore, when turning to physical states,E
will no longer be irrelevant, and explicitly influence the value of the correlator. This is not the only observation we can
make.R (x) is not the only renormalization group invariant of dimension 4. Indeed, also the operatorE (x) does not run
with the scale, as we directly infer from equations (149) and(150). We can therefore imagine to study correlators of linear
combinations of the operatorsF andE , where the linear combination is chosen in such a way that theemerging pole
structure would be real. We notice that this is not a trivial issue in the Gribov-Zwanziger framework [24], basically dueto
the fact that the poles of the gluon propagator itself are already not necessarily real-valued. When the Gribov parameter γ2

is formally set back to zero, we shall recover the correlators of the usual kind in Yang-Mills gauge theories, as the BRST
symmetry gets restored, as well as the BRST exactness of the operatorE .

A research project along the previous lines would thus be very interesting to pursue. It would also enable us to show
that the soft BRST breaking, deeply related to the presence of the Gribov horizon, is not necessarily a negative feature of
the theory. Rather, it could be very helpful in the construction of suitable operators [39]. We therefore conclude that the
results in this paper have to be seen as a first step towards theconstruction of (hopefully) physical correlators in the GZ
theory. As it should have become clear from this paper, an important tool has been the possibility of embedding the (R)GZ
theory into the extended model. The nilpotent exact BRST symmetry of the latter model can be used to identify the renor-
malizable operators by using cohomological techniques, which then also give the renormalizable operators in the physical
limit. These latter operators will contain the classicallygauge invariant operators. At the same time, also renormalizable
BRST exact operators can be found, which reduce to renormalizable operators in the physical limit, being not necessarily
BRST exact. It then remains to be seen whether suitable linear combinations of these two types of operators can be found
that successfully describe physical correlators. This will be the topic of future work. As there are multiple mass scales
present in the (Refined) Gribov-Zwanziger framework, we expect all of them to influence the pole of the correlators under
study [39].
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