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Abstract

This paper presents a complete algebraic analysis of tleemeatizability of thed = 4 operatorF&v in the Gribov-Zwanziger
(GZz) formalism as well as in the Refined Gribov-Zwanziger @ @ersion. The GZ formalism offers a way to deal with gauge
copies in the Landau gauge. We explicitly show tﬁ%,tmixes with otherd = 4 gauge variant operators, and we determine the
mixing matrixZ to all orders, thereby only using algebraic arguments. Tix@gnmatrix allows us to uncover a renormalization
group invariant including the operatﬁﬁv. With this renormalization group invariant, we have paveel way for the study of
the lightest scalar glueball in the GZ formalism. We disduss the soft breaking of the BRST symmetry of the GZ action can
influence the glueball correlation function. We expect tvial mass scales, inherent to the GZ approach, to eneptte
structure of this correlation function.

1 Introduction

QCPD is the theory of strong interactions describing quard gluons which displays confinement at low energies. The
mechanism behind confinement is still not successfully rilesd. Even if one omits the quarks, the theory remains con-
fining. Therefore, confinement is highly entangled with tly@amics of gluons, which makes glueballs very interesting
objects to investigate. The existence of glueballs would Ipinnacle of the correctness of QCD, however, so far, there
is still no clear experimental evidence for the existencgloéballs. This is mainly due to the mixing of glueball sgate
with meson states which contain quarks. By increasing titésits and/or by doing more involved experiments cregtin
certain glueball states which cannot mix with quark staveslballs), one hopes to uncover some clear evidence for glue
ball states. We mention a few experiments to demonstratgaheral interest in glueballBANDA [1], BES III [2] and
GlueX [3], ALICE at CERN [4].

The lack of experimental evidence has not stopped the contyntanwidely investigate glueballs in various theoreti-
cal models, see [5] and their references therein. Currehiipretical estimates of e.g. masses of the differentogiile
are compared to the lattice data. In lattice gauge thedtiese is no doubt about the existence of glueballs and one
can even work in pure Yang-Mills gauge theary [6]. There aeyphenomenological models which contribute to our
intuition in glueballs. More direct contact with fundaman®CD can be made by identifying suitable gauge invariant
operators, which carry the correct quantum numbers to &f@atihilate particular glueball statés [7]. This is in@rec
dance with the direct approach to study bound states in goafield theory([8]. The mass of the glueball can then be
determined by the leading singularity in its propagatorahhif the glueball is stable, is just a simple pole. Of course
it is necessary to take into account non-perturbative tffes glueballs are inherently connected to the non-peatve
region of QCD. One widely used method to estimate these gatpes is based on QCD sumrules[[9, 10], while taking
into account condensates, sometimes in combination wstlairion or other nonperturbative effects. Also in holograp
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descriptions of QCD, such glueball correlators have alydmn investigated, see for instancel [11, 12].

In this paper, we shall concentrate on identifying a suganimposite operatag , which is a renormalization group in-
variant containing:ﬁ\,, representing the lightest scalar glueball. Let us exglaim we shall take into account a particular
source of non-perturbative effects. For this, we need afliifiokground. As is well known, the Faddeev-Popov quantiza-
tion of the Yang-Mills gauge theory was constructed in otdeestrict the path integration only over gauge inequivele
fields. This restriction is translated at the level of théacby implementing a gauge, e.g. the Landau gadjge = O,
through the introduction of extra terms in the action, whitheturn break the local gauge invariance. In 1977, Gribov
showed|[13] that this gauge fixing procedure in Yang-Millsgatheories does not entirely restrict the path integnato
gauge inequivalent fields, i.e. there are still multiplegguoopies?, which all fulfill the Landau gauge condition. More-
over, it appeared that the infrared behavior of the gluonthedyhost propagator is strongly influenced when handling
these copies. Therefore, there was a need for a formalischvibok into account these Gribov copies, even if it would
be only in a partial way. After a semiclassical treatment liib@v in [13], Zwanziger managed to construct an action
which analytically implements the restriction to the GrlbregionQ [[14]. This action is called the Gribov-Zwanziger
actionSgz. The regiomQ is defined as the set of field configurations fulfilling the Landjauge condition and for which
the Faddeev-Popov operator,

= -0, (9,5 + gAY (1)
is strictly positive. Therefore,

Q = {A}0,A =090} 2)

The boundarygQ, of the regionQ is called the (first) Gribov horizon. The restriction of thatlp integral toQ removes
most of the Gribov copies in the Landau gauge related to {iafimal) gauge transformations [13]. However, there are
still copies present i2 and hence a further restriction to the Fundamental Moduéyidh (FMR), the region free of
any Gribov copies, should be implemented. Unfortunatiélyydw, nobody knows how to handle such a restriction to the
FMR. Therefore, the best analytical approach to restrietrthmber of gauge copies is by working wigz. We recall
that Sgz is renormalizable to all orders [15,116,117], even in the pnes of massless [18,]19] or massive quarks [20].
Implementing the restriction to the horizon introduces st fion-perturbative mass scale, the so-called Gribov peteam
y°. Also, we have found i [21, 22] that the auxiliary fields oduced by Zwanziger to construct the act®y, develop
their own dynamics. This can introduce a second mass sdaléh@ action. Generally, such non-perturbative mass scale
are expected to be transmitted into the pole mass of thelatorefunctions.

In a previous papef [23] we have investigated the opelﬁf;pin the ordinary Yang-Mills theory with Landau gauge
fixing. This was already far from being trivial as at the quantievel mixing occurs with two other 4 dimensional oper-
ators, i.e. a BRST exact operator=g(...), and an operator’ which vanishes upon using the equations of motion. We
have shown that this mixing does not have consequences wiéng to physical states. Indeed, a BRST exact operator
is always irrelevant at the level of physical states as theg¥dills action is invariant under the BRST symmetry. In
this paper, we shall elaborate on the operEﬁ;r‘oy investigating it in the more complex Gribov-Zwanzigearfrework,
whereby exploiting the construction we have set up in [28this case, a similar mixing shall occur, but, in contraghwi
the Yang-Mills case this mixing shall have consequenceBephysical level. Indeed, as the Gribov-Zwanziger action
gives rise to a soft breaking of the BRST symmetry [22], onefa@gure out that the corresponding BRST exact operator
which will mix with yfu%, will no longer be irrelevant. Let us mention that an attetoptalculate the glueball correlator

<F§,(x) FGZB(y)> has been done in [24], but without taking into account themgiof Fﬁ, with other operators. We start the

paper with an overview of the Gribov-Zwanziger action inteat2. We also recapitulate the Refined Gribov-Zwanziger
action which takes into account the dynamics of the new figltteduced by Zwanziger. In section 3, a renormalizable
action including the local, non-integrated operzf@;(x) is constructed whereby in section 4 we shall analyze thengixi

of this operator to all orders. In section 5, we shall detamthe renormalization group invariant which conta‘Fﬁ; We

end this paper with a conclusion in section 6, where we alesgut some insights on the potential relevance of the soft
BRST symmetry breaking of the GZ action.



2 Overview of the (Refined) Gribov-Zwanziger action
2.1 The original Gribov-Zwanziger action

In this section we shall shortly recapitulate the ordinarjp@v-Zwanziger action in Euclidean space time which imple
ments the restriction of the path integral to the redibnn [14], Zwanziger derived the following action,

S = Sm+ S+ [ dxhig, 3
with Sy the classical Yang-Mills action,
1
Sm = 5 [ CXFAFS. @
Sy the Faddeev-Popov gauge fixing
S = / ox (bP0uAR + D) )
andh(x) the horizon function,
h(X) — ngabCAB(Mil)adfdecAﬁ. (6)
The horizon condition:
(h() = d(N*-1), (7)

with d the number of space-time dimensions, needs to be fulfillextder to assure that we are working with a gauge
theory quantized in the Landau gauge. This was proven usatigtecal arguments i [14, 15]. The acti@n contains a

non-local term, but one can localize the horizon functiorirttsoducing the following set of additional fieldé f}c, d)ﬁc)

which is a pair of complex conjugate bosonic fields, ;(ﬁﬁc, wﬁc) which is a pair of Grasmann fields. After this proce-
dure,$;, gets replaced b§sz, which reads

Sz = S+, 8)
with
S = Sm+Sy
+ [ o (@50, (203 -+ g FomAR0T) — ficay (v + g 1Y) — g (G £ (Duc) 9]
S = -Yg / d?x (fab°A3¢ﬁ°+ fabCAf}iliﬁ°+g (N>-1) y2> : )

We can further simplify the notation of the additional fiel(ﬁﬁc,q)ﬁc,mﬁc, ooﬁc) asS displays a symmetry with respect
to the composite indeix= (|, c). Therefore, we can set

(o300, of) = (@7, 07,6 (10)
so we get
S = Sm+Sit+ /ddX (25?6“ (Dﬁb‘bib) — 0oy (Dﬁb(’%b) - gfabcauQaDﬁdcdq’ic) : (11)
Finally, the horizon conditiori{7) can be written in a moragtical version as

or

whereby the quantum actidnis obtained through the definition

el - / ddb]e 5oz, (13)



where [[d®] stands for the integration over all the fields.

For the Gribov-Zwanziger action, the conventional BRST syatry is softly broken[[14, 22]. We recall that the BRST
transformations of all the fields are given by

sA. = — (Dyo)® s@ = %gf""b"cbcC

2 = b?, skt =0,

S(bia: (*)Iav S(")Ial: 0,

o = 7, sp* = 0. (14)

The existence of this explicit breaking can be easily chédkereleasing the BRST transformatisronto the action

Sez,

sz = OF [ i (Atafe— (DI (88 +91F)) (15)
We refer to[[22] for more details concerning this breaking.
In order to discuss the renormalizability &2, we treat the breaking as a composite operator to be intestinto the
action by means of a suitable set of external sources. Thtedure can be done in a BRST invariant way, by embedding
Ssz into a larger action, namely
356z = Smm+Si+S+Ss, (16)
whereby
S = S/ dd alDﬁb¢| Va'Daanb Uﬁlivljli)
_ /dd Ma'Dab(I)b gfabtualDbd d(l)c—i-Ua'Daboq
~NG'DEPGP — VE'DERP + g VDRI — MEVE + UIINGT) (17)
We have introduced 4 new sourdg8', V&', M3 andN3' with the following BRST transformations, and

sUZ = M3, sME' =0,
SV =N&, sNi' =0. (18)
This embedding into a larger action is necessary for thebadge proof of the renormalizability as this heavily relies

on having a BRST symmetry. Replacing the sources with tHeisigal values in the end, returns the Gribov-Zwanziger
action,

ai _ njai _
UH ‘phys_ NIJ |phys_ 0, (19)
Mab — ab — 6ab6 20
H phys H phys yz L ( )

as one can easily check.

2.2 The Refined Gribov-Zwanziger action

Let us explain the origin of the Refined Gribov-Zwanzigei@ttIn the original Gribov-Zwanziger framework in 4 di-
mensions, one obtains an infrared suppressed, positiigtating gluon propagator which tends towards zero for zero
momentum and an infrared enhanced ghost propagator. Thavioe of the gluon and the ghost propagator stemming
from the actiornSsz seemed to be in agreement with the lattice results for a liomg tUntil more recently, the authors of
[25] discovered a completely different behavior of the @woators in the deep infrared working on larger lattices. Now
the ghost propagator no longer seems to be enhanced anditireggbpagator reaches a finite value at zero momentum.
Since the publication of [25], more lattice data have conditithese striking results [26,127,128] 29] 30, 31]. Therefore
the Gribov-Zwanziger framework appeared to be in disagesemvith these newest lattice data. However,in [21, 22], we



have shown that it is still possible to obtain results wita kielp of the Gribov-Zwanziger action which are in qualtati
concordance with these new lattice data by taking into acthe dynamics of the field&®7°, 0%, of\wfl°). This gives
rise to additional non-perturbative effects within the l§gri-Zwanziger framework as, for instance, the dimensiom tw
condensat€h;“$3° — o e, which has been found [21,122] to be proportionafdolt is apparent that the dynamics of
these extra fields is highly entangled to the existence dfithizon. Therefore, we have refined the Gribov-Zwanziger ac
tion by explicitly adding the operatd@r“$3° — oi°wfi° from the start, while preserving the renormalizability ln¢ theory.

The Refined Gribov-Zwanziger action is thus given by

Sez = Sez+ Sy +Sen, (21)

whereby
S = M2 [ (@707 - afef)
d(N*—1) 1 g 2
o= 2——=[d M2. 22
S = [y (22)

We have introduced a new parametend a new mashl2. The second terrf, is a constant term, which is comparable
with the term—y? [ dd (N? — 1) y? in the original Gribov-Zwanziger formulatioh](9). This temill allow us to remain
inside the Gribov regio®. For more details on this construction, we refer the reanl{£2].

3  The (Refined) Gribov-Zwanziger action with the inclusion d the scalar glueball
operator

3.1 Generalities

The most natural way to study the lightest scalar gluebddyigetermining the correlaﬁ)<@ Fz}” > This correlator

can be obtained by adding the opereﬁ@;/4 to the (Refined) Gribov-Zwanziger action by coupling it teoairceg(x). In
this fashion, we obtain the correlator as follows,

{%m %(x)z] o <¥@> , (23)

with Z¢ the generator of connected Green functions|_In [23] we hawdied the glueball operator in the standard Yang-
Mills theory, supplemented with the Landau gauge fixing. Traemework we have set up for pure Yang-Mills theories,
can be now extended to the more complex case of the GribownZiger action, which is our current goal.

Unfortunately, simply addin@ﬁ, to the action turns out to be too naive. [n]23], we have seahttie 4 dimensional

operatorF@ mixes with other 4 dimensional operatorsdn= 4, in agreement with the general theory concerning the
renormalization of gauge invariant operators [32,33, 34].

Obviously, we also expect a similar mixing in the Gribov-Zwaer framework. As outlined in_[23, 35, 36], we can
distinguish between 3 different classes of dimension 4atpes. The first class; is the set of the gauge invariant opera-
tors, for examplﬁﬁ,. The cohomology of the nilpotent BRST symmetry generatdiows to identify theC, operatorsr

as those which can be written 5 = 0, but alsor # §(...). The second clags, are the BRST exact operators, which
are trivially BRST invariant due to the nilpotency of the BR8perator. Thug € C; if and only if £ = 5(...). The third
classCz contains operators which vanish when the equations of matie invoked. One can then argue that the mixing
matrix of these operators must be upper triangular,

Fo Zry Zyx Zyy ¥

This particular behavior of the mixing of the various clag®perators can be easily understood [35, 36]. BEareper-
ators cannot receive contributions from gauge invai@nbperators: matrix elements of a bare BRST exact operator

1. Atleast, this is our starting point. Later, we shall detiere a renormalization group invariaat containingFuzv, so we can calculatér (x) R (y)).



between physical states are zero. But, if there would be @rmeailized gauge invaria@; contribution in the expansion
of £, then there would be room for a nonvanishing contributiohiclv is of course a contradiction. Likewise, a@y
operator vanishes upon using the equations of motion, Wthiland aC, operators in general do not, hencEsoperator
will not receive corrections from the other type of operator

In [23], we have strictly proven in an algebraic fashion tpeer triangular form of the mixing matrix for the operafcjg,
just by using the Ward identities of the action. In particilee have proven that the following action is renormalizabl
for ordinary Yang-Mills gauge theories in the Landau gauge,
1
Tyvgue = S+ [ 6 (b90AT+ 0D + [ axagFE+ [ aBaacAL+ [ dn (0u0%Ag+ 3,0 D)
—~—
eCy e

+ [ dxang S“M +ng) (25)

%,_/
eCy

whereby we see the three different classes of operatora@ridle have introduced three new sources: the doublg) (
with sn = A and the color singleti. The term (OubaAﬁ+auCaDﬁbcb) is indeed an element belonging to the second
classCy, as we can rewrite it as(d,c?Af). In [23], we have introduced the last term through a shifthef gluon field

AL — A+ OAL
3.2 Inclusion of the glueball operator in the Gribov-Zwanziger action

With the mixing of the 4 dimensional operators in mind, we paspose an enlarged Gribov-Zwanziger action containing
the glueball operatdﬁﬁ,. This action will turn out to be renormalizable. For this, @e& make two observations. Firstly, the
limit, {¢,9,0,w,U,V,N,M} — 0, has to lead to our original Yang-Mills acti@ymgiue With the addition of the glueball
terms given by equatiofi (25). Secondly, setting all the seratated to the glueball tergiF? equal to zero, we should
recover the Gribov-Zwanziger actidixz in equation[(16). Therefore, we propose the following stgraction:

Sgue = Zoz+ / dix QR3S + / xs((1 [9,C*AL + 36306 + g faadTRAG" + U D0+ VaDPGP UV | )
= Sgz+ / dx qRAFS + / dIx(\ auca + 0009 + g far WA DL + U2DPHP 4 VDGR + uv}

+n [aubaAﬁ +0,C*D3’C” + 090 — 9w+ g fakedPAAY® + g farIRD* P — g farepdT A

+MSiDﬁb¢ib + gUf}i fabcDﬁbed)ic _ USiDﬁbqb + NSiDﬁbe _ gvljti fabcDBdCdQC + VljtiDﬁbqsib

+MEVE - UG (26)
Indeed, upon taking the limitd,d, w,©,U,V,N,M} — 0, we recover the Yang-Mills actid{Z5) and setting all sources
equal to zerod, n, A\) — 0, we find our original Gribov-Zwanziger action back, seeatimn [16). Notice that in princi-
ple, we could have taken other possible starting actionsiwaliso enjoy these two correct limits. We could have tried to

couple different sources to the different BRST exact temsteiad of employing only one soungeHowever, this would
not lead to a renormalizable action, while the actlor (2@<dmirn out to be renormalizable, as we shall prove.

We shall now try to establish the renormalizability [of(2§)using the algebraic renormalization formalismi[37].

The first step is to introduce two auxiliary terms necessantlie process of renormalization. Firstly, we add an ad-
ditional external terngext1 to the action,

&th /dd ( aDabe+ szafabchC(:) ’ (27)

which is needed to define the nonlinear BRST transformatiftise gauge field\} and of the ghost field®. K3 andL?
are two new BRST invariant sources which shall be set equadroin the end,

Ka|phys L% phys = O- (28)

2. The term proportional to the equations of motion will biaduced later.



Therefore, these sources can be seen as two auxiliary sowhieh do not change the physics of the theory. Secondly,
we also introduce the following external term,

Stz — / dixs(X ABF) = / XY ALIGE — / o (X DA, + XA (29)

whereby(X,Y;) is a new doublet of sources, i€ = Y;. This additional term is necessary in order to have a sufficie
powerful set of Ward identities. Without this term, two Wadeéntities of the original Gribov-Zwanziger action would b
broken which are absolutely indispensable for the prookad¢mormalization of the action (see Ward identity 8. and 9. i
the list below). Again, in the end, we shall set

Xi|phys:0v Yi|phys:0v (30)

We shall thus continue the analysis with the following attio

2 = Zguet Sext1+ Sext2- (31)

The second step is to search for all the Ward identities abbyehe classical actioB. Doing so, we find the following
list of identities:

1. The Slavnov-Taylor idenitity:
5(x)=0, (32)
where
S(E) = / ddx(zsz 5 &5 & 6z 8 | a0 & .8 8 62) (33)

= = = = ai
Saom ace Do Pag g TMiaum TN ave e ek

This identity is a functional translation of the BRST invaarces.
2. TheU(f) invariance:
Ujz = 0, (34)
with

5 .38 5 5 4 8 a0
d a___ _$— o —P— — MA —yai
/dx<¢' 567 Yiger T Yo “iaap  Miamg M aug
5 i ®
I_
NG “6\/a’+Y6YJ+X5XJ>

+NG (35)

Using Qs = Ui, we can associate an extra quantum number ta-tfedued fields and sources. One can find all
guantum numbers in TABLE 1 and TABLE 2.

3. The Landau gauge condition:

2
SE OpAL— 0u(NAY) - (36)
4. The modified antighost equation :
ox ox ox
5. The ghost Ward identity:
G%T =AY, (38)

with

5 5
d b b
/d ( +gfac< e 'e'mc 0$6$°+V“|6N°'+U“ 5|v|c'>>'

(39)



6. Two linearly broken local constraints:

oz oz ; ;
a7+ Ougng — 9T M AT AMT (XA,
% + au 5?\1& abcwb| 62 =g fabCABUﬁi -ng fabCAﬁUﬁi ) (40)
7. The exack;; invariance:
RijZ =0, (41)

with
5 5 IV
d
= /d <¢a6wa Jaqsawﬁlar\lal USJ&M&“”W)

8. An extra integrated Ward identity:
0 ) e} 0
d - ai —a S —
/d < - n&\ s U i+ g X'avi>z 0, (42)

which expresses in functional form the BRST exactness obfiezator coupled ta.
9. The integrated Ward Identity:

o) & o) o) a O B
[ x<c o+ g U e Vi s )\ & |z=0. (43)
10. TheX-andY-Ward identities:
6 6 6
d P —_— —_— pu—

d
/d [1 n +(q6ba]z

I
©

(44)

| (Al [P [of |of [ ]
dimension 110 2 211 1 1 1

ghostnumbef 0 | 1 | -1| 0| 0| O 1| -1
Qi-charge | 0 | O 0 o(1|(-1]1]|-1

Table 1: Quantum numbers of the fields.

| U [ME N[V [KE[ L [a[n[A]X[Y]
dimension 2 2 2 2 3 4 (00|00} 1|1
ghostnumbef —1 | O 1 O|-1|-2|0|0|1]|]0]1
Qi-charge | -1 | -1 1 1 0 0O |0|jO0|O0O]|1]1

Table 2: Quantum numbers of the sources.

Let us stress here that it is of paramountimportance to hgeed set of Ward identities to start from. For the constarcti
of the action>, one should keep in mind the limits to the ordinary Gribovah&iger case and to the Yang-Mills action
with the inclusion of the glueball term. It is logical that a&fentity which plays a crucial role in one of the two limit
cases, should not be broken by the actipas can be seen as an enlargement of the two limit cases. This ie#ison
why we have introduce8cy;2. Without the auxiliary sourceX andY;, the extra integrated Ward identify {42) and the
integrated Ward identity (43) are broken, and without th@seidentities one cannot prove the renormalizability af th
action in an algebraic way. Let us also mention that in thenany Gribov-Zwanziger case, we have two extra linearly



broken constraints, belonging to the set of Ward identitiesquation[(4D). However, it is not a problem that these two
identities are broken, as the other two linearly broken traires in equation(40) turn out to be equivalent at thellefie
the algebraic renormalization, namely: they have the sdfeet®n the counterterm.

Subsequently, we are ready to turn to quantum level. Thd gtép is to characterize the most general integrated local
countertern® which can be freely added to all orders of perturbation thedf is however restricted due to the exis-
tence of the Ward identities. Let us investigate theseiotisins a bit closer. The classical action changes undentgua
corrections according to

R Y ) (45)

wherebyh is the perturbation parameter. Demanding that the pertiuglotion (X + h=®) fulfills the same set of Ward
identities obeyed by, see([37], it follows that the counterter® is constrained by:

1. The linearized Slavnov-Taylor identity:
EBzZC =0, (46)

whereass is the nilpotent linearized Slavnov-Taylor operator,

/ddx 6_21 626+626+626 b +i]5 . O
oK@ 6Aﬁ OAR OKZ © dL2dcd - oc? ESL(’Jl 6ca o 6¢a
e} 0 e} 0
MSI&Jm Nfl“{)vau +>‘_ +Y! 5)(|>
and
BsBs =0. (47)
2. TheU(f) invariance:
Uiz = 0. (48)
U;jj is given in expression (35).
3. The Landau gauge condition
0z¢
S 0. (49)
4. The modified antighost equation:
oz° ox¢ ox¢
5. The ghost Ward identity:
Gz =0, (51)
with
e} 6 e} e} e}
d abc | =b b bi
G@ /d <6Ca+gf (r: = ,6mc+cqb q5C+vu 6NC,+UH 5|v|m>>' (52)
6. The linearly broken local constraints:
oz¢ 0z¢
s Mamg — O
0x° ox¢ bebi OZ°
ﬁ—i_a“ESNa' gfa @ I6bC 0. (53)



7. The exackj; symmetry:

®ijZ¢ = 0. (54)
8. The extra integrated Ward identity:
e} e} 0 i 0 0 0
d & N a_ > ai P R VA c _
Jd x(w\ 55+ g+ U g g >Q6Yi>z 0. (55)
9. The integrated Ward Identity:
e} o) i 0 i 0 0
d a_“- @ Y ai_ - ai_~ 3 Y c_
/d x(c 5o+ Ui Ui A6Yi>z 0. (56)

10. TheX-andY-Ward identities:
o) o) o) o)
d B W WA -~ c a 9 [sc _
/d x[(l Mg gyt Bz T 0 6ba] z 0,
o) o)
d —

At this point, we are ready to determine the most generagiated local polynomial® in the fields and external sources
of dimension bounded by four and with zero ghost numbertdichby the constraintg (#6)=(57). The linearized Slavnov-
Taylor identity plays an important role in simplifying therfn of the counterterm. Indeed, the counterterm can be param
eterized as follows:

3¢ = (85 closed but not exact part 8sA™2, (58)
——
= %3

whereby>§ is a cohomologically non-trivial part whilg§ represents the cohomologically trivial paft:1 is the most
general local polynomial with dimension 4 and ghost numbgr One can prove that all fields and sources belonging to
a doublet can only enter the cohomologically trivial paid][3rhis is exactly the reason why we have opted to introduce
the source, which is coupled to the BRST exact term, as part of a doulrghis way, the sourcg can only enter the
trivial part, and turns out to be useful to explicitly provetupper triangular form of the mixing matrix in equatibnl24
One can now check that the closed but not exact part is given by

5§ = aSym +boSym, (59)
whereby

~ 1

Sm = / dxeFRFS (60)

10



and the trivial part is given by the following rather leng#spression:
35 = 35 / ddx{ {al(Kfl‘ + 0T AL + ap L2c? + agUj 0,07 + aa V| 0, + a5 00707
+ag UBV3 +a7g fPU3 0PAS + ag g FPVATPAS + ag g FPGRAS 9,0P + 100 FPGF (9,A%) 0P
+a X' POAT+ aroX o AL+ agaX! "H2C2 4 ag4g fapoX' o wb o + a49 faboX' W U-Hb(*)'
+asXIGRb? + a6X'U)] AL+ 2170 fapoX! G OVPS + 2179 FancX WO + +81 79 fancX WHPF
+a180 fapoX TRTOCE + a1oX' X §IGF + 8 X X PG + aoX' Y 1 G0,W) + 8219 fancY 0P ¢

a0 fanY ' WTAPOS + aoY ' &c?

+q| b1 (K + 0,8 A} + c1T0pA] + bal. 2c® + baU 007 + c30,U 507 + baVi§ 00 4 a0V o
+hs@FOOF + C50, @007 + ds0”@PO? + b UAV,E + brg FPUZ OPAS + beg FPVA WA,

+b, gfab Auaud), + Cog fale HAu ¢, + dggfabcauq Aud), + b10X aA“-i- c10X! o Au
+d1()ax o Au-i- by X! EI)_-aCa—i— b12g fabCX 0.) 0.)- (JO- + blzg fabcx (JOJ- (*)i 0.)- +by3X' waba-i- b14X U 'aAﬁ
+bisg fabcxim?q)lj)vj: + b 159 fabcx W; ¢b$C 59 fabcx (*) ¢b¢C +b1eg fach 0% TP + b17X X ¢a

-+ X XG0 + byeX 'Y L) + b1og faneY TFEPOS + b o fancY' WG ¢ + booY ' wc?

+n [elKIA] + €0,CA) + f1T0uA] + el 3¢ + eU 007 + fa0,USd7 + eV 0,6 + fadpVi oo
+es0FO%0F + f50,0f 007 + 050°GF 0P + es UZVA + erg FAPUE OPAS + egg FPVITPAG

+e9g FAPUGPAS 0,07 + fog F2PG (DAL OF + Gog T2P°0, TP ASDY + €10X' G aA“+ f10X' 06 Au
+0100X WRAR + e11X DAC? + €120 fapX' FWVR + €50 fapcX PR + 13X @Pb? + 14X U2AS
+e150 faboX TPOLDL + €160 TaboX TOPHE + €50 fanoX TIOPHE + €169 fanoX TFTOC + 17X X IR

-+ X X6 + e1aX'Y 1E0] + €10 fancY G + €169 fancY &0 + eZoYiQar:a]
A | g fapcX 2GS + hig faneX' §2@Ta + hoX ' T2a? + hae?a 0290 + (variants Omg)] } : (61)

The coefficientsy, a, etc. are a priori free parameters.

As the attentive reader might have noticed, we did not ineltetms of the form(g?...), (n2...), (an...), (¢*...),
(AG?...) etc., into the counterterm. However, by just looking at theahsionality, the ghost number and the constraints
on the counterterm, one might conclude that certain ternggiatiratic and higher order in the sourcgsn, A) are per-
fectly allowed. One can imagine that an infinite tower of ceuterms would then be generated and thence it would be
impossible to prove the renormalizability of the action as/rdivergences are always being generated, which cannot be
absorbed in terms already present in the classical actioweker, we can give a simple argument why one may omit
this class of terms with the help of an example. Assume thatvaugld introduce the following term of ordep in the
action,

FZ
/ dIx2 .. (62)
4
Subsequently, when calculating the correlator, this tepuld/give rise to an extra contact term contribution,
0 9 / z] <F2( 2) Fz(y)> <F2(y)>
————— [ [dge = +oy—2)( —== ). 63
s /9 a2 )TV ©3

term due to part ig  term due to part irg2

Eventually, we are only interested in the correlator Zg¢ y and therefore we can neglect the tefml (62) quadratic in
the sourcey. Moreover, when studying the caze- y, one should also couple a source to the novel composite topera
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F4= Fuz\,F(fB, which is not in our current interest. We can repeat this awgnt for all the terms which aregeroin the
physical limit. Therefore, this argument is not only valit the dimensionless sourogs) andA, but also for the massive
sourceKy, Ly, X, Yi. Though, some care needs to be taken. Let us explain this agii an example. The modified

antighost equation has the following form:

0%° ox¢ ox¢

In this case, due to the terﬁplg%, one compares terms of quadratic order in the sourcgk,..., with terms of first
H

order in the sources g.. .. This identity can never be fulfilled is one immediately awatl terms of quadratic order K.
Therefore, we have chosen to keep all the possible combirstif higher order in the massive sources in the counterterm
(€1) as there are only a finite number of combinations, whileping in mind the higher order combinations of the di-
mensionless sources. Only after imposing all the condsaire can then safely neglect the terms quadratic in thecesur

With the previous remark in mind, we can now impose all thest@ints [48){(57) on the counterterm, which is a very
cumbersome job. We ultimately find

~ 5 3S
* = aOS{M—i-boS(M-i-al/ddX(Aﬁ :Aé/l—FAﬁ ;éw

NG'0,Gy + V0,07 + 0,57 0,07 + 0,00™ 9w, + ViI'ME — UZNG' — g fand) 2¢'0,,c°

+0,C%0,c* + K3ouc + M30,0% — U200

—g fabcvdambiaucc -9 fabcaumaq)biau(:c)

+by / dxq <Aﬁ

+0,0%'0,0% + 0,079, T + VEME — UZINE' — g fapd)20°10,¢° — g fandV P9, — g fabca@aq;biaucC)

OSim | 5 i 1ai iy i iy i i3 wai
sha T 0T 0uC? 4 K30,c? -+ M0 — U 'opefl! + N'opaxl! + Vo,

+ay / dxn (aucaauca +M{0u05 — U006 + N30 + Vi 0,07

+ay / dh (ugiaucpai + V20,00 + 0,907 + ugiv;i> —a / dx (xia@a‘aucﬁ> : (65)

Only now, we can discard the term quj‘auc"jl as it is of quadratic order in the sources. One could arguevilacan
also neglect terms of higher order W' and N§'. However, both sources belong to a BRST doublet. Moreoter, t
corresponding partner sourcé4', Vi, acquire a nonzero value in the physical limit, and it wougdrpossible to write
the BRST exact term in our starting acti@ge (see expressioi (26)) as avariation when neglecting these kind of

12



terms. In summary, the expression

5 3S o
S | paOSM 5 c2g 2 1 K30,6 + MBDL08 — U0

A3 ¥ BAR

NGOG, + V20,87 + 0,500 + 0pw™ G, + VA MY — UZ'NE' — g fandJ 20 9,c®

= aOS{M+bO§{M+a1/ddX<Aﬁ

—g fabcvﬂlambiaucc —g fabcaua)aq)biaucc)

+b1/ddxq (Aﬁé&sgg'

+0,8%0,C% + M39,0% — UZ9,wfl + N30, 6o + V20,93

+0,0%0,08 + 0,079, + VEME — UZINE' — g fapd)20°'0,¢° — g fandV P9, — g fabca@aq;biaucC)
+a / d?xn (aucaauca +M39,0% — U206 + N30, + V30,05

+0,070,08 + 0,079, + VEIME — UBNE' — g fapd)20°'0,C° — g fandV P07 9,c° — g fabca@aq;biaucC)

+ay / dh <u§iau¢ai + V20,5 + 0,00 + ujiv;i> —a / d’x <xia@aiauca> , (66)
gives the general counterterm compatible with all Ward iities.

We still need to introduce the operators belonging to thestla, which are related to the equations of motion, see
sectiorL3.IL. Therefore, the next step is to perform a linedirsn the gluon fieldA] in the action>

AL AL oA, (67)
wherebya is a dimensionless new source. As this shift correspondsredefinition of the gluon field it has to be
consistently done in the starting action as well as in thenterterm. Later on, we shall see that introducing the releva
gluon equation of motion operator through this shift, wilbas us to uncover the finiteness of this kind of operator.
Performing the shift in the classical action yields thedwling shifted actiort’

¥ = S+ [ dx (b0 +TDPC) + [ d'x (_Kg (D™ + %gLafabccbcc)
+ [ o' (970,03 P — w2, D — 9o, 1D )
+ / ddx(—MﬁiDﬁbcpib — gUZ' DR of + UZDRPwp
~NE'DEPGP - VE'DEPRP + gV DRI — MEVE + UEING')
+ [ ARSFE + [ 0 [0 + 00006 + g fuadGPAKG" + U D0 VAP 4 UV
+ / d?xn [aubaAﬁ +0,CD’C” + 0900 — 0D+ g FartdPAD® + g faredw’ D0 — g FardTPA WP
+M (D) +gUg! £22°(Dyo)° of — U (Duw)® + N (Dy@)* — gV 2 (Dyc) af +V (D®)*
MV - UINE] + [ o (VAIGT — XDC3, + XiA0,07
+ / ddxaAﬂES;g' + / da {—aubaAﬁ+ gfakbAﬁcbauCa}
+ / dxa {—g fakbau$?A5¢b +9 fakbaanAhwb — 0 fabmfoka0uad mAﬁcd}
+ / d?xa {—9 faktMEASDP + 9 fakdJ2ALGP — 0 faoNPA — g fakaiaAh?Fﬂ

—/ddX(X [gz fabcfbkdUia(l)cAde + ngabcfbkdvachde} . (68)
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Notice that we have neglected again higher order terms isdheces- (an...), ~ (aA...) and~ (aqg...) as the argument
(©3) is still valid. The corresponding countertekfi reads:

5 28 o
;:" Al S{A:" +0,T0,C% + K20,C* + M39, 03 — Ula, o

Nalau +Vala|,@al+au¢alau¢al+au Iaua)ﬁl_i_vjliMﬁi aINaI gfab(,l-J ¢b|a c©

se = aOS{M+bO§{M+a1/dd <Au

+b1/ddxq<Au 5%

+0,9%0,07 + 0,w 9, G, +VIME — UZING' — g fandJ|29P'0,¢° — g fandV P00 0C® — g fancd @0, c)

— U290 + N9, + V20, 9

+ay / d?xn <6ucaauc +M0u07 — U0, + NEoue + Vo, 0r
+0, 0007 + 0,w 9, T + VIME — UZNE' — g fapdJ 20°'0,C° — g fandV 2@ 9,c® — g fancdyic*¢ P9y, c)
tay / dn (ugiauq)awvgiau |+ 0,00, ¢a'+ua'va'> a / dx <x 3,@0,c )
dSrm
d
+ap / d x<aAf} 58 )

+a1/ddxa (ZAﬁauavAf} — ZAﬁazAﬁ +99 fabcAﬁAsauAS + 492 fabcfcdeAﬁp\t;)Aﬂp\e)) ) (69)

once more dropping higher order terms in the sources.

The final step in the renormalization procedure is to redbw counterterra’® into the original actiort’,
2(9, W, @, ®) + h=® = Z(go, wo, o, Po) + O(h?), (70)
We setp= (AZ, ¢ 2 b ¢2, w?, §7, &) and® = (K3, L3, M3, N&', V&, U, A) and we define

do = Z40, =20, B = Zo®, (71)

while for the other sources we propose the following mixinafiix

do Zgq Zan Zqgd q
Mo | =| Zna Zm Zn n|. (72)
Jo ZJq ZJr] VAN J

If we try to absorb the counterterm into the original actioe, easily find,

_ 1_p2
Zg = 1-h3,
172
7?2 1+h(2+a1) (73)
and
_ _ a:
Zé/z _ Z§/2:ZA1/4Zgl/2:1—h?l,
Z, = 7%,
Zk = ch/z,
2 = 77 (74)
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The results[(73) are already known from the renormalizatibthe original Yang-Mills action in the Landau gauge.
Further, we also obtain

Z;%/Z _ Z%/Z Zgl/z 71/4—1—h%,

7y2 _ 2;1/2,

5 = %t

vy = __Zgl/z 1/4’

N = ZA1/27

z, = 1+ h% ~zt,

v = 1—h% = 7527, 44, (75)
whic_h are known from the original Gribov-Zwanziger acti@ee [15]. In addition, we also find the following mixing
matrix

(qu Zan ZqJ) (1+h(b0—ao) 0 0)
Zog Zn Zy | = hby 10|, (76)
Zyq Zim 2y hby 01
while for theZ-factor ofA we have
7, — ZC1/2 ~1/2 291/22;1/4' (77)

Also this part was already known, s€el[23]. So far, we havegirdhat the two limit cases are at least correct. Finally, we
find the new results

zy = zgz3"?,
7 = 73’z (78)

In summary, the actio®’ is renormalizable. Moreover, we have only 4 arbitrary paars,ag, a1, bo, b1, which is the
same number as in the limit cas@, §, w,®,U,V,N,M} — 0, i.e. the Yang-Mills case with the introduction of the diaé
operator~ Fuz\, [23]. This is already a remarkable fact.

3.3 Inclusion of the glueball operator in the Refined GribovZwanziger action

In analogy with [22[21] we shall add the two dimensional mass ~ (72 — tf'w?) to the actionzgue in equation

(29),
zRglue = zglue+ quq; + Zen, (79)
whereby
Zgp = [ x(S(-I0%) = [ (-3 (0707 - @),
Sen = / déxcOJ, (80)

with J and® new sources, angthe parameter already defined in equation (22). In orderteeagith the physical action
(21), we define the following physical limit,

d(Nz—l)yz
V22N

We further definesJ= 0 ands®© = 0, hence the BRST invariance is guaranteed.

O phys= 2 (81)
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Let us now investigate the renormalizability of actibggue We can go through the same steps as in the previous sec-
tion. Therefore, we again add the two external pie€gg; andS.xt2 as defined in equatioh (27) arid29), to the action
zRglue

R = ZRque"’ Sextl + SEXLZ- (82)

Subsequently, one can easily check that all Ward iden(@d)s- (41) and[(44) remain unchanged up to potential haisnles
linear breaking terms. Therefore, the constraini$ (484) énd [5Y) remain valid. Unfortunately, the extra integdat
Ward identity [42) and the integrated Ward identifyl(43)lar@ken due to the introduction of the mass term. However, the
mass term we have added is not a new interaction as it is omlgirgtic in the fields. Therefore, it cannot introduce new
divergences to the massless thearand it can only influence its own renormalizaficas well as potentially vacuum
terms, i.e. pure source terms. Also, next to Ward ident{@ds - (41) and[(44), we have a new identity

O0ZR
= cJ 83
) J, (83)
which is translated to the following constraint at the levithe counterterm,
O3

As a consequencgy, is independent from the sour@ Therefore, it follows that the form of the counterteX can be
written as

% = 3°435, (85)

wherebys¢ is the counterterni (66) & and=$ is depending od. One can now easily check the} = kJ?, with k a new
parameter as this is the only possible combination with theeeJ, which does not break the constrairts|(46) 4 (54) and

GD).

K is in fact a redundant parameter, as no divergencéswill occur, as explained ir [22]. Therefore, the countertés
is actually equal t&®. Defining

Jo =23, (86)
we find
zy =27, =252)%, (87)

and we have proven the renormalizability of the actiéh

4  The operator mixing matrix to all orders
4.1 Preliminaries

Let us return to the mixing matrix of the sourags) andJ and pass to the the corresponding operators. We have found

that
do Zgg 0 O q
Jo Zq 0 1 J
We shall further need the inverse of this matrix,
1
. 0
q z%(j do
n|=| —za No |- (89)
J AL Jo
Zyq

3. We employ massless renormalization schemes.
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We can write the final actio’ from equation[(618) in a more condensed form as

Y = Zoz+SeitSext2t /ddX(QT +NE 40 )+ /ddXM\C ; (90)
whereby we have defined the operators
;o= RIS,
= SN,
H = Aﬁ% , (91)
with
N = [aucaAf} + 9600 + g fa I AL + UADYP 1 vADAEP LUV . (92)

Itis then an easy task to construct the corresponding mixiatyix for the operators themselves. We recall that ingesti
of an operator can be obtained by taking derivatives of tmegsing functionaZ®(q, n, J) w.r.t. to the appropriate source.
For example,

- dz°(q,n,J) _ &q 8z°(q,n,J) dn 8z°(q,n,Jd) B dZ°(g,n,J)
0 30 o3  oq 5p  on 5o &

(93)

and thus

Fo = —0—F —=—G—=—H, (94)
° Zgq-  Zyq

and similarly foreq and#p. Henceforth, we find

¥o Zoi ~DZqq  —ZooZaq ¥
9 = 0 1 0 £ |. (95)
Ho 0 0 1 H

This is a nice result as we recover the expected upper trianfprm. In addition, as has aZ-factor equal to 1, we
also find that the BRST exact operatoidoes not mix withy/, although this mixing would in principle be allowed. This
can be understood as follows. The integrated BRST exachtper is in fact proportional to a sum of four (integrated)
equations of motion terms and two other terms,

/ X 0%+ 0,CDECO + 0900 — 36D+ 0 arD2AYP + G e dTFDRYP — g rdTPA P + MEDEYY

+gU§' fabCDﬁbe(bic _ a'Daboq + Na'Dﬁ &)P _ gVﬁ' fabCDBdCdml +VS|Dqu5P + MSIVI?I _ USINSI

6ZGZ _ 6ZGZ 6ZGZ . 6ZGZ 6ZGZ 6ZGZ
/ d*x <ba S TS s T e T g +M Mg +U 5ua'> , (96)

and therefore, liker/ , it does not mix with the other operators. Notice that we @awrite the integrated BRST operator
in two other forms:

0% 62 Z o 62 o o
4 CZ | & G 6z GZ GZ GZ
/ d'x <ba o ¢ o 05 T s TN NG Vi 5\/&) ! o7
or
o 62 Z o L0 LOX LOX
4 a GZ G a GZ GZ ai GZ ai GZ
= [ (b Sy I O M 5N3i> . (98)
Remark
We can also use the refined actibggz instead o gz. We define2rgz as
2RGz = ZGz+ Zpp + Zens (99)
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wherebyZ g andZen are defined in equation (B0). Replacihg by >rez does not alter equation (95), but it does slightly
modify expressior (36),

52 57 5 W aM@ h U@ S & o oo )
(100)

/ de — / &y (ba5ZRGz +Ca6zRGZ +$362RGZ +ma5ZRGz VL O>RGz Ly O2rGz J5ZRGZ @6ZRGZ
ob?2

and analogously for expressidn{97) and (98).

4.2  The physical limit

In the next subsection, we shall work in the physical limibas final intention is to examine-point functions with the
(Refined) Gribov-Zwanziger action itself. In the physidaiit, £ becomes:

T |pnys = Oub*A} +0,CDE°c” + 007D 9P — 0,6 D + g 22D, DR e df + g F A" + vPg AT
+d(N?-1)y*. (101)

From this point, we can omit the constant tedr(NZ — 1)\/1 as it shall not play a role in the calculation of the glueball
correlator. Later, we shall determine the renormalizagioyup invariantz_ (x) which containst,(x). As £ mixes with

Fuzv(x), this renormalization group invariant shall also contdiis tonstant term. However, a constant term can never
contribute to the final glueball correlat@x. (x)® (y)) as it can never help to produce connected diagrams betwedwah
space time points andy. Therefore, we shall simplify the calculations by omittiids term already from this point.

In the physical limit# is given by

0Scz
}[’phys = Aﬁ 6Aﬁ )

(102)
wherebySs7 is the physical Gribov-Zwanziger actidi (8). Naturallyg tmixing matrix [95) stays valid.

4.3 The mixing matrix to all orders

It this section, we shall determine the mixing matfix](95)ytborders. This proof is very elegant as it does not require
to calculate any loop diagrams, and it is purely based onbadge manipulations. We shall extend the proof given in
[23], which is based on [38]. Moreover, as a byproduct, treopshall also reveal some identities between the anomalous
dimensions of the different fields, which can serve as a chagklations as i (714) and (75). We shall directly work with
the physical actiol®sz. In the end, we shall also look at the Refined Gribov-Zwanzgé&on,Szgz.

We start our analysis with the following genengoints function
6700 ) = (@00 00w) = [[deR0a)... 01 (xwe 7. (103)
wherebyg, i = 1...8 stands for one of the eight fieldag, c?, c2, b?, 630, Wi, §3°, &), i.e @ = A, ..., gs = . We

shall immediately omit the vacuum teryi(N? — 1)d in the actionSgz, as it is relevant only for the calculation of the
vacuum energy and not for the calculatiomgpoints functions. The total number of fields is givenry

n = %ni, (104)

with nj the number of fieldgy present in then-points function[(108). We are therefore considering thth rategral for
a random combination of fields. Subsequently, from the defim{I03), we can immediately write down the connection
between the renormalized Green function and the bare Gueetidn, which is, in a very condensed notation,

8
6" =% 2g8. (105)

From the previous equation, we shall be able to fix all the imalements of expressioh (95), based on the knowledge
n
that‘(’j—cfg;,Z must be finite in a renormalized theory.
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We shall therefore calculate this quantity. The first stetp @pply the chain rule:

n/2
dg"  _ & (92 —n./z 8 /2[390 +6y2 0 ;
a2 = 2\ o [1% )95 aeag Tagzag] o8

Next, we need to calculate the derivatives wg?t.

° Firstly, we need to fin@gg/agz. We employ dimensional regularization, with= 4 — €. If we derive

% = Wz,

w.r.t. pandg?, combine these two equations and employ the following defmbf theB—funtiorﬂ

g 2 2
= — €&l + s
e 9" +B(9)
we obtain
09 _ _ —tdh
0>  —eg?+B(g?)
. Secondly, we calculat%z%. We start from
V% = Zp¥
wherebyZ ., = Zy = Zy due to the limit[(I). Deriving this equation w.if yields
d 0 dlin 10u 0JIn 1
e 2 Rt P
ag ag og HOg?" op —€g°+p(g”)

and we have defined the anomalous dimensioyf e

alnzyz
o

0 = M

. Finally, we search fo@Z(;jnj /2/692. Applying the chain rule gives

-n/2 —0i/2 A51/2 1/2
dlnz 1/2
Next, we derlvev from the definition of the anomalous dimension,
1/2 1/2 1/2
v - ualnzd _ uagz dInZ _ (e +B() oInZ;
¢ ou ou ag2 02

From expressio (113) and (114), it now follows

—pi/2
0Z(pi Yy

7 = —hiZ = 2 -
ag —£g?+B(9?)

4. We have immediately extracted the partin

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)
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Inserting equatior (109) and (115) into expression|106)find:

—ni/2
dg" Hizqan i 2 0 0 n
o V2 ) 116
EanV(pJ 8goagg +92 05 02 Go (116)

dg? -0’ +B(g?)

The right hand side still contains bare and therefore dmerguantities. We would like to rewrite all these quantiiie
terms of finite quantities so that we can use the finitenedsedeft hand side to make observations on the right hand side.
Also, we should rewrite in some manner the numiyeais the mixing matrix[(95) is obviously independent from thes
arbitrary numbers.

J:

Therefore, as a second step, we shall rewrite the right higiedod (116) in terms of a renormalized quantity. Firstly,
we calculate(% G- Using
0

de oz 1 (F§(y) 1 3Sez 3%z | . .. 056z 3z \\ .-
L) i e - 5 )
oz = (@ (557 ) +ag (M gaisy ~ Do g + T g~ g ) e -
we can write,
LdG8 [ ( n{FoZ(y)}_; { 5562} 1 { 6sez}_g n{_ 6sez}
158 OSez }) 118
We have introduced a shorthand notation for an insertiohem4points function, e.g.
F2 F2 . .
8{° 0 = (lx)..0@). (119)
Secondly, we analogously find
0
5708 = [ o'y (98 {sboor ALt +Bs0 T ALo0} ) (120)
Thirdly, we rewriten; g by inserting the corresponding counting opeﬁitnto the Green function,
i 08z
igd = [d “{ —} 121
NjGo / Y60 cPé(V)acpg,(y) (121)
Inserting [118),[(120) an@ (1R1) into our main expresdidi@jTesults in
dg" 1 d 8 n{ ' 55@2} n{Foz(Y)} € n{ 5362}
Bk _ ) - _ 4= OGZ
€ n 6%2} € n{— 6%2} € n{ 6%2}
_Z b (V) —24_ bt _Z
59 {O(y)ESbo(y) +56 wo(y)mo(y) 59 ‘”O(V)esmo(y)
+326" { Y800 A 005 + Voo 1AL g ﬁfo}] . (122)

Notice that we have also absorbed the fatp “"/Zjnto the Green functions, and therefore we can replgf@again

by ¢". Finally, we need to rewrite all the inserted operators mrtpoints functiong" in terms of their renormalized
counterparts. For this we return to the mixing matrixl (95) parameterize it as follows

%o 1+2 -2 b 7
o = 0 1 0 £ . (123)
Ho 0 0 1 H

5. ltis easily checked thatd y(pé oy counts the number qﬁé insertions.
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Here we have displayed the fact that the entries associatbdayg?,€) andb(g?,€), which represent a formal power
series ing?, must at least have a simple polesirTherefore, we can rewrite

2
cennly) = O = (e a7 (1) +DE (et DAY g
Ho| s = Ao(y)% = A(y)g%(yz), (124)

whereby we recall that we are working in the physical limidame have replaceciL[\phys by the expressiorl (102).
Subsequently,

V%gofabCAﬁ,o ﬁ% _ yzgfabCAf} ﬁc’
Voo AL~ VoA (125)

as one can check with tiefactors in [75). Finally, all the other operators are et of motion terms, which appear in
expression(96)[(97) and (98) and therefore have the Zafaetor as the operatar, i.e.Z = 1. Summarizing, expression

(I22) becomes:

5 -t S (oo (W (oo )
W)l ) o) oo

+b6" {8,07D0P — 9, G DL + 91D, GF DS + Vg ALY + o AT}

+826" {yzgfabCAﬁ¢B°+vzgfab°Aﬁ¢ﬁ°}] . (126)
where we have immediately taken the full expressiodfnysin equation[(10/1).
From expressior (126), we can determaig?®, ) andb(g?,€). As %—Z; is a finite expression, we know that the right

hand side of equation (IP6) must also be finite. Thereforallake Green functions are expressed in terms of finite
guantities, we can choose a set of linearly independenstand demand that their coefficients are finite:

n . —€—-a n &z . E/2+b_yA(gz)
g"{r}: prr Tl G {A A } TR (127a)
n . _%_yb_b nfas3 mabb)l. —Ye—P—Yc
6" {boyAL} - et G {c 9,D30¢ }'W’ (127b)
nf+ay ~abgbl . VYo —Vg— b nf—ay mab . Yo—Yo—b
n abcy ~apmbddgc ._yC_ym_y¢+%_b
g"{ ~of*QEFDIf T (127d)
nf abcpagbe ._y¢_6\/2_b nf abcpag be _—yqf—évz—b
G" { VoA — oL R e Eo et (127¢)
We can rewrite the coefficients gf"{# } andg" {A%} in (IZ7a) as
—e-a 1 (1+afe g/2+b—ya(@®) _ 1 1+2(b—ya(g®)/e (128)
e +PB(g?)  9?1-P(9?)/(e0?)’ —&g?+ B(0?) 292 1-PB(9?)/(eg?)
Hence, in order to be finite, we must conclude that
2
aey - B2,
1 2
D) = W) -3 (129)
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Notice thata andb depends omy?, but not one. Therefore, the matrix elements of the first row of the partaization
(140) only display a simple pole in

Moreover, from the other equations we shall obtain relatioetween the anomalous dimensions of the fields and sources.
Let us start with the coefficient af" { bd, A, } in equation[(I27b), yielding

—&/2-b—w(@®) _ 1 1+2(b+w(g?))/e (130)
—&g?+B(g?) 202 1-B(g?)/(eg?) ’
which means that
0Fe = wle) 3P (131)

Inserting the value db(g?, €) from expressior{{129) gives the following relation

Ya+t¥ = O. (132)

1/2

This relation is a translation of the reIatuﬂi/ZZ = 1 found in equation[{44). Indeed, deriving both sides wu.t.

gives

1 0 1/251/2
1/2 1/2 au (ZA Z ) = Yat+¥ = 0. (133)

Analogously, for the coefficient af " {caaqu}bcb}, we find

bg®e) = —Ye— Y. (134)
yielding
YA+Yet+Ye = P (135)
292’

which is a translation o;ié/zzél/zzl/zzg 1 aspng = —2%2. Next, the coefficients of (12FFc) arld (127d) lead to

V¢+Vqs+vA=2—SZ, vw+Vb+vA=2%2, yc+Vb+V¢+vA=§, (136)

stemming from

1/2 1/2 1/2 1/2

Z.%/Zzl/z 1/2Zg 1, Zw/zzl/z 1/22g 1 72777, = 1. (137)
These relations originate from the relations derivedin & [75). Finally, the coefficients in equatién (12 7€) anidi
if
1 2
W= = -8 = b= (@)~ 5P, (138)
or equivalently
Z%/ZZ}\/ZZgZyz —1, qu)/zz/i/zzgzv2 _1 (139)

which is also fulfilled agZ,z = 2y = Z5 /22, 1/*.

In summary, we have determined to all orders the mixing m#&%). For notational simplicity, we take the vallie (1.34)
for b and we use the equalitg = vc:

1_B@) 2% 2
£g? € €
Z = 0 1 0 . (140)
0 0 1

We have encountered numerous checks which show the carigiEour results.
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Remark
This matrix is also valid for the refined acti®gz. One can repeat the proof by replactg with Szygz and by adding
the following term inM?2 = J to the game,

S = M [ dX(@ TP (141)
see equatiori.(22). In the end, expression]126) will coecextra term

& - 7_892;(92)/ddy[<—s—a>g"{f}+(§+b—vA)g“{Aéf;fz}+(—§—vb—b)g“{b<y>§%(‘;§}

(_yé_b)g”{c(y)gci(yz)} —ch”{C(y)gci(yz)}Jr (‘%‘W) gn{w(y)z?ms?;)}

€ n 0z n 0Scz n 0z
+ (5 —vw) G {MWW} ~ VoG {¢(y> 3 (y) } — VoG {?F(y) %) }
+bg n {au$?D3b¢it) _ aumiaDﬁbwlb +9 fabcaumiaDBdqu)ic + yzg fabcAﬁ¢BC+ yzg fabcAﬁq)—Bc}

+6yzg“{vzgfab°Aﬁ¢B°+vzgfab°A3¢ﬁ°}+6Mzg“{M2<as¢—m>}] , (142)
where we have introduced the anomalous dimensidvi%f
0InZ,,»
5 ME. 143
M2 au ( )
This leads to the following extra coefficients
—Yo— Yo — Op2 _ —Yo — Yoo — Op2
n_MZaa:yny‘b M N M2eRd) - Y@ Yo Ov2 144
g { ¢_I ¢I } _892+B(92) 9 g { Q)i Q)i } _892+B(92) ( )
so that
W+y¢+6M2:01 V6+Vw+5M2:Oa (145)
or equivalently
72 2 = 1. 5278 =1, (146)

which is correct agy = 72 = Zng/Z, see equatioh (87). All the other relations stay valid ofrseu

5  The glueball correlator
5.1 Arenormalization group invariant

As the final step of our analysis, we shall try to determinerermalization group invariant operator which contains
2

F = F“VT(X). This is useful as we would want to obtain a renormalizatiarug invariant estimate for the the glueball mass,

i.e. the pole of the corresponding correlator. This analisscompletely similar to the one presented.in [23], due & th

fact that the mixing matrix is exactly the same. However, for the benefit of the readeudeepeat the analysis. We

define the anomalous dimension mafrief the mixing matrixZ as

0
ualz = Zr. (147)
With the following derivatives,
o (., B/ 1 o, o 5 0B/d)
i (1-B2) = Zree - pian 252
9% _ 1, 2. 202
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we obtain

2
92 a(gég ) 292 e _292%

0 0 0

Notice that this anomalous dimension matrix is finite, ahatigdd be. This matriX is related to the anomalous dimension
of the operators, since

0z oX
Xo = ZX = 0_ua X+Zua—u

= p.a—u = —TX, (150)

F Fo
x = (=), =[] (151)
H Ho

We now have all the ingredients at our disposal to determie@armalization group invariant operator. We set

with

R = KF +LE+mH, (152)

with k, ¢ andm functions ofg?, to be chosen in such a way that

00 = &s_ B/g OYe ayc o  om
Ha & = 92 9f+2kg2 £+2kgz uauZ—I—uauﬂ{ 0, (153)

hence
g+ 2kgzg;g =0,
f=m.

We therefore choose

and we conclude that

R = F = 2Ye(0P)E — 2ve(9P)# (154)

is a renormalization group invariant scalar operator dairtg Fuzv, in the case of the Gribov-Zwanziger actidgz as
well as in the case of the refined actibpgz.

5.2 Irrelevance of the terms proportional to the equations émotion

As we have found a renormalization group invariant, the fgaal [39] shall be that of evaluating the glueball correla-
tor
2 2 B(gz)
F (%) = 2¥e(9) E (X) — 2yc(97) 74 (X) o F(y) = 2¥e(@P)E () — 2¥e(9%) # (y) "
phys

(155)

using the (Refined) Gribov-Zwanziger action. However, thiseyond the scope of the present article as this calculatio

shall be far from trivial, even at lowest order.

B(g?)
92

(R (X)R(Y))phys = < (
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As usual the equation of motion terms like will not play a role. Let us demonstrate this with a simplerapée,

_ any ORez \ a,. » OSRGz “Srez _ a Se—SRez
(F () Y))pys = <T(X)Au()’) 6Aﬁ(y)> = / [dP] 7 (X)AL(Y) 6Aﬁ(y)e / [d]F (X)AL(Y) S50

_ *SR’GZa(Aﬁ(y)? (X)) . _

_ / dole ez =il = 380 (7 (). (156)

which is zero ax # y andd(0) = 0 in dimensional regularization. Therefore, expresdiéijteduces to,

B(g?)
gZ

2
) (F XF () + (2¥e(@) 2 (£ 2 () e

B(g?)
gZ

(£ (0L ())grye = (

= 2(@2) =3 ((F (O W) pnys+ (E (9F ()Dpys) - (167)

6  Summary and discussion of the relevance of the soft BRST ba&ing

In this paper, we have scrutinized the glueball operates Ffﬁzv using the (Refined) Gribov-Zwanziger actiggz (Srcz)-

For this, we have followed the framework of an earlier worB][&here we have investigated this operator for the more
simple case of the usual Yang-Mills gauge theory, quantingtie Landau gauge. However, this framework is heavily
based on the existence of the BRST symmetry while neBgmor Srgz are BRST invariant[22]. Therefore, through-
out the paper, we have relied on the extended madgland >rgz. With these “enlarged” actions, one can then draw
very similar conclusions as in the ordinary Yang-Mills caBbe results of interest, i.e. those for the (Refined) Gribov
Zwanziger action, then easily follow from these extendedlet® in the physical limit, in which case certain external
sources are assigned a suitable value.

Firstly, the classically gauge invariant operaﬁgj' mixes with two other operators, a BRST exact operatcs, s[auCaAfH
000 + g farpd@PAKGP 4+ U2D2PHP + VaDARP + UV, and an operator proportional to the gluon equation of nmgtio
H = Aég% = ARGz By using the algebraic renormalization procedure, we hthatermined the form of the mixing

A
¥o Zoi ~DZqq  —DooZaq ¥
o | = 0 1 0 z |, (158)
Ho 0 0 1 H

matrix Z to all orders,
which has an upper triangular form, as required [35, 36].

In a second part of the paper, we have completely fixed all ldments of this mixing matrix, by using only algebraic
arguments. We have found

1— B(®D)  2v(g®)  2v(d)
0 1 0 5 (159)
0 0 1
which is completely analogous as in the case of the ordinang¥Mills theory [238]. This is already a remarkable fact.

In addition, we have also encountered numerous checks oresuits as we have recovered multiple known relations
between the anomalous dimensions of all the fields and seurce

In the final part, we have determined a renormalization grougriant includingzuzv, given by

. B(gz) _ 2 — 2 2 160
o= g7 2ve(9)E — 2¥e(9)# (160)
which is the main result of this paper. This operator woukhtbe a good point to start the study of the (lightest) scalar
glueball from, by means of the correlatat (X)&.(¥)) pnys [39]-
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In standard Yang-Mills gauge theories, gauge invariantatpes # only mix with BRST exact and equation of mo-
tion type terms. While the latter always vyield trivial infoation at the level of correlators, the BRST exact piecegp dro
out due to the BRST invariance of the gauge invariant operatand of the vacuum. In the Gribov-Zwanziger approach,
the situation gets more complicated due to the breakingeoBIRST symmet@. In the physical limit,z is no longer a
BRST invariant operator. In addition, the BRST symmetryoif{lg broken. Therefore, when turning to physical states,
will no longer be irrelevant, and explicitly influence thdwa of the correlator. This is not the only observation we can
make._(x) is not the only renormalization group invariant of dimemsib Indeed, also the operatsi(x) does not run
with the scale, as we directly infer from equatidns {149) @itdl). We can therefore imagine to study correlators oline
combinations of the operatops and £, where the linear combination is chosen in such a way thaetherging pole
structure would be real. We notice that this is not a trivdalie in the Gribov-Zwanziger framework [24], basically tlue
the fact that the poles of the gluon propagator itself areaaly not necessarily real-valued. When the Gribov paranete
is formally set back to zero, we shall recover the corretatdithe usual kind in Yang-Mills gauge theories, as the BRST
symmetry gets restored, as well as the BRST exactness optratorz .

A research project along the previous lines would thus bg irgeresting to pursue. It would also enable us to show
that the soft BRST breaking, deeply related to the presehttedsribov horizon, is not necessarily a negative featdire o
the theory. Rather, it could be very helpful in the consinrcof suitable operators [39]. We therefore conclude that t
results in this paper have to be seen as a first step towarastistéruction of (hopefully) physical correlators in the GZ
theory. As it should have become clear from this paper, aitapt tool has been the possibility of embedding the (R)GZ
theory into the extended model. The nilpotent exact BRSTrsgtry of the latter model can be used to identify the renor-
malizable operators by using cohomological techniqueg;then also give the renormalizable operators in the glysi
limit. These latter operators will contain the classicgluge invariant operators. At the same time, also renoratzg
BRST exact operators can be found, which reduce to renaraldé operators in the physical limit, being not necessaril
BRST exact. It then remains to be seen whether suitablerlowrabinations of these two types of operators can be found
that successfully describe physical correlators. This beélthe topic of future work. As there are multiple mass sale
presentin the (Refined) Gribov-Zwanziger framework, wesetpll of them to influence the pole of the correlators under
study [39].
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