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Abstract

The underlying gauge group structuref= 11 supergravity is revisited. It may be described by a one-parametric family
of Lie supergroupsX (s)® SO(1, 10), s # 0. The family of superalgebrad(s) associated ta= (s) is given by a family of
extensions of the M-algebreP,, Qu, Zup, Zay---as} by an additional fermionic central chargg,. The Chevalley—Eilenberg
four-cocyclewy ~ IT* A TP A T4 A ITP Tupep ON the standard = 11 supersymmetry algebra may be trivialized®m), and
this implies that the three-form fieldi; of D = 11 supergravity may be expressed as a composite of (g one-form gauge
fieldse”, w®, B, Ba145 andn®. Two superalgebras af(s) recover the two earlier D’Auria and Fré decompositions of
As. Another member o€ (s) allows for a simpler composite structure fag that does not involve thg91 s field. X (s) is a
deformation ofX (0), which is singularized by having an enhan@d32) (rather than jus80(1, 10)) automorphism symmetry
and by being an expansion 65p(1/32).

0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction

M-theory (se€{1]) emerged at the time of the second superstring revolution in the mid nineties. In contrast
with other theories like the standard model, QCD or eyahrelativity, M-theory is at present not based on a
definite Lagrangian or on an S-matrix description; rather, it is characterized by its different perturbative and low
energy limits (string models and supergravities) and by dua[@pamong them. Such dualities, including those
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relating apparently different models, are believed to be symmetries of M-theory; the full set of M-theory sym-
metries should include these dualities as well as the symmewiethe different superstring and supergravity
limits.

In this Letter we are interested in the underlying gauge symmetrnp ef 11 supergravity as a way of
understanding the symmetry structure of M-theory. The problem of the hidden or underlying geometry of
D = 11 supergravity was raised already in the @ering paper by Cremmer, Julia and Scherk (C[15)

(see alsq17,18), where the possible relevance ©9(1|32) was suggested. It was specially considered by
D’Auria and Fré[19], where the search for the local supergroupibt= 11 supergravity was formulated as
a search for a composite stture of its three-formAs. Indeed, while the graviton and gravitino are given
by one-form fieldse’ = dx* ef, (x), ¥* = dx" ¢;(x) and can be considered, together with the spin connec-

tion w* = dx" w’(x), as gauge fields for the standard super-Poincaré gip0p the A, ,,.,(x) Abelian
gauge field is not associated with a symmetry generator and it rather corresponds to a thrde-féfow-
ever, one may ask whether it is pdssi to introduce a set of additionahe-form fields such that they, to-
gether withe? and ¥, can be used to exprests in terms of products of one-forms. If so, the ‘old’ and
‘new’ one-form fields may be considered as gauge fields of a larger supergroup, and all the CJS supergrav-
ity fields can then be treated as gauge fields, with expressed in terms of them. This is what is meant
by the underlying gauge group structure Bf= 11 supergravity: it is hidden when the standd»d= 11 su-
pergravity multiplet is considered, and manifest when becomes a composite of the one-form gauge fields
associated with the extended group. The solution to this problem is equivalent (see SEctiontrivial-
izing a standardD = 11 supersymmetry algebra four-cocycle (relateddtd3) on an enlarged superalge-
bra.

Two superalgebras with a set of 528 bosonic and-32 = 64 fermionic generators

Py, Qo Zalaz, Zalmas» QZ,, (1)

including the M-algebrg21] ones plus a central fermionic generai@f,, were found in[19] to allow for a
decomposition ofA3. Both superalgebras are clearly larger thap(1/32), but an analysi§22] of its possi-
ble relation withosp(1|64) and su(1|32) (by an Inénii-Wigner contraction) gave a negative answer. The two
D’Auria—Fré superalgebras aparticular elements (namelg(3/2) and ¢(—1)) of a one-parametric family of
superalgebraéi(s) characterized by specific structure constamthie meaning of which has been unclear until
present.

In fact, the first message of this Letter is that the underlying gauge supergroup structureéo&th super-
gravity can be described by any representative ohexparametric family of supergroups X (s)® SO(1, 10) for
s # 0, and that these are non-trivial# 0) deformations of£ (0)» SO(1, 10) C £(0)® F(32), where» means
semidirect product. The second point is the relation of the underlying gauge supergrou®@Saiih32). Re-
cently, a new method for obtaining Lie algebras from a given one has been prop2&kkind developed if24].
The relevant feature of this procedure, tixpansion method [24] is that, although it includes tHedni—Wigner
contraction as a particular case, it is not a dimensiongou@sy process in general, and leads to (super)algebras
of higher dimension than the (super)algebras that are expanded. We sha(@at SO(1, 10) may be obtained
from OSp(1/32) by an expansion}f(O)x O(1, 10) ~ OF(132)(2, 3, 2) (seeAppendix A). The SO(1, 10) au-
tomorphism group of (s) is enhanced t&(32) for X (0). It is also seen that (0)®» $(32) is the expansion
O0(1132)(2, 3).

1 several groups may play a role, as the rank 11 Kac—Mabgygroup[3] or OSp(1|64) [4,5] and its subgrouL(32) [6,7]. This group
is the automorphism group of the M-algeli@q, Qg} = Pyg; it is also a manifest symmetry of the actiof#s9] for BPS preong10], the
hypothetical constituents of M-theory. Clearly, ih= 11 supergravity one might see only a fraction of the M-theory symmetries. As it was
noticed recentlyf11,12] (see alsd9]), a suggestive analysis of partially supersymmeftie- 11 supergravity solutions can be carried out in
terms of generalized connections with holonomy gr&32). The case for ®F(1|32) ® OFP(1|32) gauge symmetry in a Chern—-Simons
context was presented jh3—15]
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2. Trivialization of a Chevalley—Eilenberg four-cocycle and composite nature of thet s field

Supergravity is a theory of local supersymmetry. The grawfper) and the graviting/j (x) can be considered
as gauge fields associated with the standard supertranslations atgebr@°") in general 1132 for p = 11),

{Qu, Qﬁ}: o?ﬁpm [Pa, Qul =0, [Pa, Py]=0. (2)

The supergravity one-form&, ¥ andw® (spin connection) generate a free differential algebra (Fifined
by the expressions for the FDA curvatures

Ra::dea_eb/\wba+i1//aA1/fﬁF£ﬂ=Ta+il/fa/\I//ﬂF5ﬁ, (3)
1

RY := dl,//a - 1//‘(3 /\a)ﬂa (a)ozﬁ = Zwabrabaﬂ>, (4)

Rab ::dwab — W% A wcb» (5)

whereT? := De® = de® — e” A wp? is the torsion andR?? coincides with the Riemann curvature, and by the
requirement that they satisfy the Bianchi identities that tiirie the selfconsistency or integrability conditions for
Egs.(3)—(5). When all curvatures are set to zeRf, = 0, R* = 0, R?’ = 0, Egs.(3) and (4)reduce, if we remove
the Lorentz»® part, to the Maurer—Cartan (MC) equations &r

de® = —iy* AYP Il dy® =0. (6)
One easily solvegs) by
e =11 :=dx" —id6°I{6°, Yo =% :=de", (7)

wherelT¢, IT* are the MC forms for the supertranslation algebra. Considered as forms on rigid supeEpgiee (
in general), one identifies’ andg® with the coordinateg™ = (x¢, 6%) of this superspacéWhene® andy* are
forms on spacetime;® are still spacetime coordinates whil&¢ are Grassmann functior®! = 6% (x), the Volkov—
Akulov Goldstone fermionf27]. For one-forms defined on curved standard superspéeed z” ES(2), % =
dZM E%(Z), 0 (Z) = dZM wib(Z) the FDA(3), (4), (5) with non-vanishindR* andR** = R but vanishing
R% = 0 gives a set of superspace supergravity constraints (which are kinemataféoell for D =4, N =1
andon-shell, i.e., containing equations of motion among their consequences, for Higimetuding D = 11 [28]).
However, the FDA makes also sense for forms on spacetime, whese/x* eﬁ (x) andy* =dx* lﬂff (x) are the
gauge fields for the supertranslations group.

For D = 11 supergravity, however, the above FDA description is incomplete since the CJS supergravity super-
multiplet includes, in addition tey, (x) andy“(x), the antisymmetric tensor field ., (x) associated with the
three-formAs. The FDA(3), (4), (5) has to be completed by the definition of the four-form field strefib®h

1
Ry:=dAs+ Zlﬂa/\wﬁ/\e“/\ebfabaﬁ. (8)

Note that, considering the FD), (4), (5), (8) on the D = 11 superspace and settiRf =0 andR4 = Fj :=
1/4le" A --- A e Fy,..q, One arrives at the original on-shéll = 11 superspace supergravity constrajags 30]
But, and in contrast with th® = 4 case, the above FDA for vanishing curvatures cannot be associated with the MC
equations of d.ie superalgebra due to the presence ofttitee-form A3. However, on rigid superspacg11/32

2 |n essence, a FDA (introduced in this contexfi8] as aCartan integrable system) is an exterior algebra of forms, with constant coeffi-
cients, that is closed under the exterior derivatiyesee[25,19,26]

3 Rigid superspace is the group manifold of the supertranslations ged{i§). We shall use the same symhB(P")| £ to denote both
the supergroups and their manifolds.
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(the group manifold of th& = 11 supertranslations group), where one alsoRgts 0 by consistency, the bosonic
four-form

1
a4=—ZW“AWﬁA€“A€bFabaﬁ 9
becomes a Chevalley—Eilenberg (GB),32]Lie algebra cohomology four-cocycle @)
1
wa(x,0%) = =2 " A P AT A TP Tapap = daws(x“, 6%) (10)

sincewy is invariant and closed. TH&(132 four-cocyclewy is, furthermore, a non-trivial CE one, since the above
three-formaws = w3(x*, 6%) cannot be expressed in terms of the invariant MC formg @32, Now, we may
ask whether there exists atended Lie superalgebra, generically denotédwith MC forms on its associated
extended superspacg, on which the CE four-cocycles becomes trivial. In this way, the problem of writing the
original Az field in terms of one-form fields becomes purely geometrical: it is equivalent to looking, in the spirit
of the fields/superspace variables democrac}B8f, for anenlarged supergroup manifol on which one can
find a new three-forniz (corresponding tet ) written in terms of products af MC forms onX (corresponding

to one-form gauge fields) that depend on the coordinZte$ *. That such a fornws(Z) should exist here is
also not surprising if we recall that thg + 2)-CE cocycles or€ that characterizg84] the Wess—Zumino terms
of the superp-brane actions and their associated FDA's, abso be trivialized on larger superalgebafs5,33]
associated to extended superspateand that the pull-back @z(Z) to the supermembrane worldvolume defines
an invariant WZ term.

The MC equations of the larger Lie superalgeBf&l32 trivializing w4 can be ‘softened’ by adding the ap-
propriate curvatures. Considering the resulting FDA for the ‘soft’ forms over eleven-dimensional spacetime, one
arrives at a theory ob = 11 supergravity in whicliz is acomposite, not elementary, field. Its FDA curvaturiy
in Eq.(8), is then expressed through the curvatures of the old and new one-form gauge fields.

3. A family of extended superalgebrasi‘(s) allowing for a trivialization of the CE four-cocycle w4
It was found in[19] that it was possible to write the three-fouz of the D = 11 supergravity FDAS), (4),

(5), (8) in terms of one-forms, at the prize of introducing two new bosonic one-faBi€2, B1“5, and one new
fermionic one-forrm“, obeying the FDA equations

B32 = DBz + % A yP I, (11)
Bglmas — DBal -as +l'(ﬂ A wﬁl—,;é---as’ (12)
BY = Dn® —i8e® APy p% — yiBY AP T g — iyoaB % AP Ty asp®, (13)

for two sets of specific values of the parameters, namely

§=5y1. y2=—% (n#0) and

2.4
5=0, p2=2" (1#0) (14)
=0 =37 n#0.
For vanishing curvatures and spin connectioff, = 0, Eqs.(11)—(13)read
dB™? = —y* AP I3, (15)
dB%5 = —jy® m/f/’ral s (16)

dn® = Iﬂﬁ A (—l Se Faﬁ — leabFabﬁa — iyzBal"'aSFal...asﬁa). a7
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Egs.(6) together with Eqs(15)—(17)provide the MC equations for the superalgebra

{Qu, 0p) = Tyg Pa + il g Zayay + Ty Zay.as, (18)

[Pa. Q] =8Tua” 0%,

[Zayar: Qo = ivilugara” Oy [Zay-ass Qul = voluy-asa” Q- (19)
Actually, Eqs.(15)—(17) and (18), (19re not restricted to the cases of EBd) it is sufficient that

8 +10y1 — 6y, =0, (20)

as required by the Jacobi identitig®].

One parameten if non-vanishing$ otherwise) can be removed by reliog the new fermionic generat,,
and it is thus inessential. Hence E{B8)—(20)describe, effectively, a one-parater family of Lie superalgebras
that may be denote@(s) by using a parametargiven by*

1) §=2 + 1),
si=——=1, y1#0 { yas+ 1) (21)
2y yo = 2y1(s /6! + 1/5!).
In terms ofs, Eq.(19) reads:
[Pa, Qa] = 2V1(S + 1)Faaﬂ Q/ﬂv
. s 1
[Zalazv Qul= lVlralazaﬂQ;sv [Zal-nas, Oul= 2)/1(6' 5'>Fa1 aso Qﬁv (22)
and the MC equations fat(s) are given by Eq96), (15), (16)and
1 1
dn® = =298 A (z(s +1) eI, p% + ZB“bFabﬁ +i (é' )B“l Fal---asﬁa)- (23)

The &(s) family includes the two superalgebrii®] of Eq. (14); they correspond t&(3/2) and &(—1). We
show below, however, that the CE trivialization«@f is possible for all the(s) algebras but fog(0), i.e., for all
but one values of the constam{s/1, y2/y1 obeying Eq(20). For these, there existsas, d@s = wa, that may be
written in terms of the®(s) MC one-forms defined on the enlarged superspace group madifgld s # 0. Such
a trivialization will lead to a composite structure of the 3-form figlglin terms of one-form gauge fields &f(s).

The &(0) superalgebra constitutes a special case. It can be written as

{Qu, Qﬁ}zPoz/S» [Pozﬁ’ Qy]:647/1cy(aQ;3), (24)
which follows indeed from Eqg22), (23)(cf. (18)) because for = 0 one can use the Fierz identity

1 5 1 1
8 8p)° = o rry’ - sal e Tuya,”’ + gl Tuyoas”®. (25)

Similarly, it is possible to collect the bosonic one-forafs B1%2, B%1% in Egs.(6), (15), (16) and(23) with
s = 0 in a symmetric spin-tensor one-fogf?,

1 1
g — > (ear;fﬂ 23“1“2F (g 5 B e ) (26)

that allows us to write the MC equations®¢0) in compact form as

d&%P = —iy® AP, dy® =0, dn® = —6diy1y? A 5% (27)

4 The case/; — 0, s — oo, may be included withys — §/2 = 0. The corresponding algebra can be dendtésh).
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Eqgs.(24) or (27) exhibit theSp(32) automorphism symmetry @ (0).

All the &(s) superalgebras,# 0, can be considered as deformation&¢®). Furthermore, the (0) superal-
gebra is singled out because its full automorphism growgpi82) while, Vs # 0, &(s) has the smalle8O(1, 10)
group of automorphisms. Hence, the generalizations of the super-Poincaré groupsfgt thands = 0 cases
are the semidirect productS(s)® SO(1, 10) and X (0)®» $(32), respectively. It is shown il\ppendix Athat,
precisely fors = 0, both X (0)» SO(1, 10) and = (0)® $(32) can be obtained fro®3p(1/32) by the expansion
method[24]; they are given, respectively, by the expansi@ss(1/|32)(2, 3, 2) andOsp(1|32)(2, 3).

To trivialize the cocyclg10) over the€(s) enlarged superalgebra one considers the most generalafusdte
three-formAs expressed in terms of wedge productg®fy®; B4192, B1495 n*,

4A3=AB" Ney Nep —a1Bap A BY. A B — 2Bbiay-as N Bb1b2 A Bbaa--aa
_ Ol3€a1ma5b1mb5cBalmas A BP1bs A o€ Ol4€a1~~~a6b1mb5Bala2a3c1cz A BU4asascicz n pbi-bs
. . b
—2i Wﬁ A 77“ A (lgleapaaﬁ - lﬂZBa Fabaﬂ + IBSBal aSFal---asaﬁ)’ (28)

and looks for the values of the constaats. .., a4, B1, ..., B3 and A such that/ A3 = a4 in EqQ. (9) providede?,
Y, B2 B4 gndn® are MC forms obeyingb), (15)—(17)(we do not distinguish notationally in E(R8)and
below between the MC one-forms and the one-form gauge fields, nor befgesard®3). If a solution exists, then
Eq. (28) for the appropriate values of the constadis. .., B3 andx also provides an expression for a composite
Ajz satisfying(8) in terms of the one-forms obeying the FDA E3), (4), (5), (11)—(13) This is so because given
a Lie algebra through its MC equations, the Jacobi idestdéieo guarantee that the algebra obtained by adding
non-zero curvatures is a gauge FDA.

The condition tha{28) satisfieq9) produces a set of equations for the constants. ., 83 and includings,
y1 andy» as parameterdThis system has a non-trivial solution for

A= (2y1—8)%=4s%y2 £0. (29)

The general solution has the form

L_L1s2+25+6 __ 1 2-3 __1 s+3 __ 3 s+6
=5 2 PETg, e Pe=com 52 P T T06y, 2

125+6 1 (s +6)? 1 (s+6)? 1 (s+6)?
M="15 2 0 BT 2 B=gEE sz 0 ““gem 2 G0

and exists/s # 0, i.e., for anys, y1, y2 obeying(20) except, as mentioned above, foe 2y1, y2 = 2y1/5! (A = 0)
which corresponds te = 0 in (21). Thus, thews cocycle(10) can be trivialized ¢4 = dws) over all ~the(;f(s)
superalgebras whenz 0; the impossibility of doing it ove€(0) may be related with the fact that jugt0) has
an enhanced automorphism symme8y32). As a result, the three-form fieldd of the standard CJ® = 11
supergravity can be considered as a composite of the gauge fields bf(thesupergroupss # 0. In this case,
taking the exterior derivatives ¢28) with the constants i{30) one also finds the expression fj in terms of the
two-form FDA curvatures.

5 This was the starting point §19], although forA = 1. Since more general possibilities—all including an additional fermionic generator—
exist (cf.[35,33)), one can motivate E¢28) as follows. As theD = 11 super-Poincaré algebra is not sufficient to account for the gauge group
structure ofD = 11 supergravity, the next possibility would be to include the tensor ch{8§e37]of the M-algebra. The ansatz would then be
Eq. (28)for 1 = B2 = B3 =0 (non®), where only the first term may reproduce, under the actiad, tfie bifermionic four formug, Eq.(9).

This would fix . to be one. However, such an ansatz still does not allow to obtaitgabeying the FDA with(8). A new fermionic one-form
n“ is thus unavoidable and its inclusion provides a new contributiesy, thus allowing forx # 1.

6 This system of eight equation + 108, — 6!3=0,A—2681=1,1—2y181—2682 =0, 3u1 +8y182 =0,ap — 10y1 B3 — 10y 52 =0,
a3 —38B3 — y2B81 =0,ap2 —5!10ypB3 =0, a3 — 2y23 =0, 34 + 10ypB3 = 0, is essentially that dfL9] oncex is set equal to one.

One may show that the (Abelian) gauge transformation properigs= doy can be reproduced from the gauge transformation properties
of the new fields.
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The two particular solutions if19] are recovered by adjustindi.e.,§, y1 in EQ.(21)) so that, = 1 in Eq.(30).
This is achieved fos = 5y; (§ non-vanishing but otherwise arbitrary), or fde= 0 (with 31 non-vanishing but
otherwise arbitrary). Thus, the two D’Auria and Fré decompositionszadire characterized by

_ _n i3
§=5y1#0, v2=5a (@ @(2)),

1 1
A=1, -0, =, =,
B1 B2 1071 B3 6y
4 25 1 1
= = = = A T A AN 31
. 15 @2 6! o3 64! 4 54(41)2 (31)
and
5=0. 1#0, p=-- (& &-1)
3.4
NPT 1 ; 1
=4, =~ A A 3 = b
T2 10y 4-5ly;
4 25 1 1
4 _ 2 = R 32
=715 2= 8l BT ear YT s (32)

Itis worth noting that there is a specially simple trivialization.f It is achieved for the family elemert—6),
characterized by, =0,

E(—6): §#0, §=-10y1, y2=0. (33)

In &(—6) the generatoZ,, ... iS central (see Eq(19)) and does not play any réle in the trivialization of the
w4 cocycle. Indeed, for these values of the parameters, (E8¥-(20)allow us to consider th€min superalgebra
whose extension by the central cha#gg...., gives&(—6) in Eq.(33). Itis the(66+ 64)-dimensional superalgebra

Emin,
{Qou Qﬁ}ZF;ﬂPa+irjﬁlazzala2» (34)
[Pm Qa] = _107/1Faaﬁ Q/ﬁ, [Zalaz» Qa] = iVlFalazaﬁ Q/ﬁv (35)

associated with the most economigyin = X©632+32 extension of the standard supertranslation group (rigid
superspace) on whiehy becomes trivial. The values of E3)in Eq. (30) give

. T p3=0
6 MTapy T T2mEny PBPTE
1
a1 = 9_0’ a2 = Ov a3 = 07 a4 = Ov (36)
and one notices in E¢§28)that all the terms containing“: 5 are zero. This makes the expressiondgrsimpler,
1 1 i i )
Az= Z!B‘”’ Aea Neb = 7 Bab B’ A B — s 5!V11p/’ AN A (106 Tugp + i B Tupap) (37)

and thusx (66132+32 can be regarded as a minimal underlying gauge supergroDp=of.1 supergravity.

The others # 0 representatives of thé(s) family are similar, although not isomorphic. For instance, the mo-
mentum generator is central far(—1) while Z,;, is central for&(oco) (y1 = 0). They all trivialize thews CE
cocycle and, hence, provide a composite expressiotzaf terms of one-form gauge fields of the enlarged super-
group X (s).
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4. Concluding remarks

We have shown that the cocyelg (Eq. (10)) on the standard = 11 supersymmetry algebe'132 may be
trivialized on the one-parametric family of superalgeh#as), for s # 0, defined by Eqg18)—(20) or (22) These
superalgebras are central extems of the M-algebra (of generatoPs, Qu, Zap, Za,...as) Dy @ fermionic charge
Q.. Trivializing the supertranslation algebra cohomology four-cocyalen the larger superalgebéas), so that
w4 = do3g, is tantamount to finding a composite structure for the three-form figldf the standard Cremmer—
Julia—Scherk supergravifiL6] in terms of one-form gauge fields & (s), Az = Az(e?, y; B9 Ba-d5 po),
Eqg. (28) with (30). Such an expression is given by the same equdf8hthat describes théjs trivialization of
the ws cocycle, in which the Maurer—Cartan forms®(s) are replaced by one-forms obeying a free differential
algebra with curvatures, EqE)—(5), (11)—(13) Thus one may treat the standard QJS= 11 supergravity as a
gauge theory of th& (s)® SO(1, 10) supergroup for any # 0.

This fact was known before for two superalgebE8] that correspond t'(3/2), Eq.(31), and ¥ (—1), Eq.
(32) (although the whole familg(s) that results from Eq20) was defined if19]). In this respect the novelty of
our results is that, far £ 0, any of theX (s) supergroups may be equally treated as an underlying gauge supergroup
of the D = 11 supergravity. A special representative of the family of trivializations is giveB(byB) for which the
Za4,.-a5 9€NErator is central. The expression oy trivializing the cocyclews over &(—6) is particularly simple:
it does not involve the one-form? . Thus, the smalleEmin = X 66132+32 may be considered as the minimal
underlying gauge supergroup bf= 11 CJS supergravity.

All other representatives of the famif§(s) are equivalent, although they are not isomorphic. Their significance
might be related to the fact that the fighki1 %5 is needed9] for a coupling to BPS preons, the hypothetical basic
constituents of M-theorf10]. In a more conventional perspective, one can notice that the chaggesidZ,, ...,
can be treated as topological charf@g] of M2 and M5 branes. In the standard CJS supergravity the M2-brane
solution carries a charge of the three-form gauge fieJdhus it should have a relation with the chatgg,; that
is reflected by Eq(37) for a compositeds field and especially by its first teri,;, A e¢ A ¢? given by the natural
three-form constructed from th&,, gauge fieldB*”. Similarly, theZ,, ..., gauge fieldB¢1%5 should be related
to the six-form gauge field g which is dual to theA field and is necessary to consider the action for the coupling
of supergravity to the M5 brar{88]. One might expect that thids field could also be a composite of one-forms
with basic term (the counterpart of the first one in RY)) of the form B 95 A e,y A -+ A eq. The role of the
fermionic central charg@/, and its gauge fielg® in this perspective also requires further study. Notice that such
a fermionic central charge is also present in the Green ald@8fésee als¢40,35,33).

Although the presence of a full family of superalgeb@s)—rather than a unique one—trivializing the
standarde 132 algebra four-cocyclens, suggests that the obtained underlying gauge symmetrigs f11
supergravity may be incomplete (this is almost certainly the case if one considers the symmetries of M-theory),
the singularity of the®(0) case looks a reasonable one. THi€D) supergroup is special because it possesses an
enhanced automorphism symme8y32) and the full £ (0)» $(32), that replaces th® = 11 super-Poincaré
group, is the expansio@Sp(132)(2, 3) of 0Sp(1]32) (Appendix A). The other members of thE(s) family only
have aSO(1, 10) automorphism symmetry and are deformations of the O element. Thus our conclusion is
that the underlying gauge group structureldt= 11 supergravity is determined by a one-parametric non-trivial
deformation of>(0)» SO(1, 10) € £ (0)® $(32).

We would like to conclude with two remarks. The first is that we did not consider in the expressionA the
field (see Eq(28)) Chern—Simons-like contributions &5, A B5?, Ba,...as A By ™, etc. These clearly would
not affect our cocycle trivialization arguments; their presence would modify the expression of the coiRpbsite
topological densities (sdd1] and, e.g.[42]). The second is that, unlike the lower dimensional versi@ns; 11
supergravity forbids a cosmological term extension. The reason may be [4&8}¢ala cohomological obstruction
due to the presence of the three-form fidlgl It would be interesting to analyze the implications of its composite
structure for this problem. The application of the results of the present Letter, and in particular the consequences
of a composite structure ofs for D = 11 supergravity and M-theory, will be considered elsewhere.
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Appendix A
Al. ¥ (0)» SO(1, 10) asthe expansion 0p(1/32)(2, 3, 2)

To apply the expansion meth¢a3,24] it will be sufficient here to consider the case in which the superal-
gebrag admits the splittingg = Vo @ V1 & Vo, where Vg, Vo (V1), are even (odd) subspaces of dimension
dimV,, p =0,1,2, and Vp is a subalgebra of;. Then, a rescaling of the group parametgbs — APg'»,

i, =1,...,dimV,, makes the MC form&» (1) corresponding to theth subspace/,, with the natural grad-
ing w'? (=) = (=1)?w'? (1), to expand as a series inas

C()ip()\‘) Z)\‘Pwipvp +)\‘P+2wipvp+2+)\‘P+4wi17,17+4+ (p:O, 1, 2) (Al)
The insertion of these series into the MC equationg,of

do'’ = _Ecl/'stqu Ao’ (pg,s=0,1,2; ipgs=2L12....,dimV, ), (A.2)

produces a set of equations identifying equal powers. ilihe equations involving only the»>*» up to certain
ordersa, =N,,p=0,1,2 (@, =p, p+ 2, ..., Np) will determine the MC equations of a Lie algebra provided
that the highesb’»Nr orders retained satisfy

No=N1+1=Ny; or Ng=N1—1=Np or No=N1—1=No—-2. (A.3)
The dimension of this new Lie algebra, tegansion G(No, N1, N2) of G, is[24]

No+2 Ni+1 N
dimg(No,Nl,Ng)z[ °2+ ]dimVo+[ 12+ i|dimV1+|:72i|dimV2. (A.4)

Consider now the MC equations 6£0), Eqs.(6), (15), (16) and (23jor s =0,

1 .
dn® = =2pyP A (ie” g + EB“brab,g“ + éB“l""“sral_.asﬂ“), (A.5)

to which we might add the“? terms that implement th80(1, 10) automorphisms. The superalgebsp(1/32) is
defined by the MC equations

dp®f = —ip* /\pyﬂ — v AV, v = —ivP A pg”, o, p=1...,32 (A.6)
wherep®? are thesp(32) bosonic one-formsd,# = C, 4 p*?, whereC,g is identified with theD = 11 imaginary

charge conjugation matrix) and¢ are the fermionic ones. The decomposition

1 ' 1 ap
0% = 3—2<pafa - %pabrab + gpar"“sral_.as) . a,b=0,1,...,10, (A7)
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is adapted to the splittin24] osp(1|32) = Vo & V1 & Vo, whereVy is generated by, V1 by v® and V> by p¢
andp9, The seriegA.1) take here the form

VY = v oz,1+k3 Dt,3+ . pabzpab'0+k2pab'2+~-~, 0° —)»2,0024- .,

M5 = 32 pas2 4 (A.8)

ChoosingNg = 2, N1 = 3, N2 = 2 (in agreement with condition@\.3)) one obtains the MC equations of the
expansiorosp(1|32)(2, 3, 2):

1 1
ab,0 _ _ — _ac,0 b0 a2__ _ — b2 a,O_ B.1lya
dp®>" = T AT dp®©= 16" NP bav Iy
1
dpab'zz _1_6(pac,0/\pcb,2+pac,Z/\pcb,O) _ oz ﬂ 1]-:%1’
5
dpa1"'a5,2= 1_6pb[a1"'a4|,2/\pb\a5],0_iUOl,l/\vﬂ,l]—v;é a5’
1
dvo{,l_ _avﬂ l/\ pab,OFabﬂDt’
dva,?:: —ivﬁ’?’/\p“b’ofabg _ i\}ﬂ 1 (ipa,zl—va + }Pab’zl"b L 1 ;Oal -as, 2Fa1 ﬂs) o (Ag)
64 32 2 5! 8

Setting p®-0 = —160?, Egs.(A.9) coincide with those off(0) ® so(1, 10) (see Eqs(6), (15), (16) and(A.5)),
with the further identificationp®2 = ¢¢, p90-2 = Bl pt1-a52 — gar-as .l — @ gndy®3 = % /64y, (no-
tice thatys # 0 just defines the scale @/,). Thus, we conclude thaE(O)ESO(l, 10) ~ O$(1]32)(2, 3, 2) of
dimension 2 55+ 2- 32+ 473= 647 by Eq(A.4).

A2. ¥(0)» (32 asthe expansion 0p(1/32)(2, 3)

Let osp(1|32) = Vo @ V1 whereVy (V1) is generated by®? (v%). ChoosingNg = 2 andN; = 3 we obtain the
expansiorosp(1]32) (2, 3) defined by the MC equations:

dpaﬁ,O: _ipay,O/\pyﬂ,O’ dpozﬂ,Zz _i(pay,O/\pyﬂ,2+pay,2/\pyﬁ,0) —il)a’l/\ vﬂ,l’
dv*l = —ivﬂ’l/\pﬁ""o, dvo"?’:—ivﬂ’a/\pﬂ“’o—ivﬂ’l/\pg""z. (A.10)

Identifying p*° in (A.10) with the sp(32) connection2*?, Egs. (A.10) are those ofé(0) » sp(32) (see
Eqgs.(27)) with p@f-2 = g8 y*1 = @ andv®3 = % /64y,. Further, dini&(0) ® sp(32)) = 528+ 64+ 528=
dimosp(1/32)(2, 3) by Eq.(A.4).
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