116 research outputs found

    Structure of Heterogeneous Two-Phase Rotating Detonation Wave with Ethanol-Hydrogen-Air Mixture

    Full text link
    In this study, the structure of a hydrogen-assisted rotating detonation wave (RDW) fueled by liquid ethanol is revealed and expounded. The simulation is carried out under an Eulerian-Lagrangian framework in which the main characteristics of the two-phase RDW are analyzed in detail. Results suggest a self-sustained rotating detonation fueled by liquid ethanol can be achieved where the majority of droplets are heated and consumed by the detonation wave. A laminated structure of the RDW due to the effect of droplet evaporation is captured and clarified, which is found to play a major role in the stable propagation of the two-phase RDW

    Investigation of Multi-Stage Evaporation and Wave Multiplicity of Two-Phase Rotating Detonation Waves Fueled by Ethanol

    Full text link
    In this study, a numerical investigation based on the Eulerian-Lagrangian model is conducted to explore a rotating detonation engine (RDE) fueled by liquid ethanol. The focus is on examining the characteristic phenomena of the two-phase rotating detonation wave (RDW) caused by droplet evaporation and varying inlet conditions. To enhance the evaporation of liquid fuel, pre-heated air is used, and both liquid and pre-vaporized ethanol are simultaneously injected. The distribution of ethanol droplets reveals an initial concentration near the injection surface and accumulation in the fuel-refill zone. Here, liquid droplets gradually evaporate after absorbing latent heat from the surrounding gas. The subsequent interactions between the evaporating droplets and the RDW vary with the droplet size. For droplets with diameters of d0d_0 = 5-15 ÎĽ\mum, after being swept by the RDW, a secondary evaporation process occurs, leading to an enlargement of the width of the reaction zone. However, the chemical reactions still predominantly take place in close proximity to the detonation front. As further increases, droplet evaporation persists in the post-detonation expansion zone over a long distance until the remaining droplets are fully evaporated and eventually burned by the hot products. The study also analyzes the extinction of rotating detonations and the emergence of new detonation waves resulting from local explosions and consequent shock collisions. It is demonstrated that variations in the diameter of injected droplets and inlet temperature can lead to different operating modes with varying numbers of RDWs

    A phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection

    Get PDF
    Immune response during pathogen infection requires extensive transcription reprogramming. A fundamental mechanism of transcriptional regulation is histone acetylation. However, how pathogens interfere with this process to promote disease remains largely unknown. Here we demonstrate that the cytoplasmic effector PsAvh23 produced by the soybean pathogen Phytophthora sojae acts as a modulator of histone acetyltransferase (HAT) in plants. PsAvh23 binds to the ADA2 subunit of the HAT complex SAGA and disrupts its assembly by interfering with the association of ADA2 with the catalytic subunit GCN5. As such, PsAvh23 suppresses H3K9 acetylation mediated by the ADA2/GCN5 module and increases plant susceptibility. Expression of PsAvh23 or silencing of GmADA2/GmGCN5 resulted in misregulation of defense-related genes, most likely due to decreased H3K9 acetylation levels at the corresponding loci. This study highlights an effective counter-defense mechanism by which a pathogen effector suppresses the activation of defense genes by interfering with the function of the HAT complex during infection

    Characterization of an aspartate aminotransferase encoded by YPO0623 with frequent nonsense mutations in Yersinia pestis

    Get PDF
    Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism

    Bees in China: A Brief Cultural History

    Get PDF

    Micro Scale Laser Shock Processing of Metallic Components

    No full text
    • …
    corecore