77 research outputs found

    Genetic Characterization of Global Rice Germplasm for Sustainable Agriculture

    Get PDF

    Unraveling the Complex Trait of Harvest Index with Association Mapping in Rice (Oryza sativa L.)

    Get PDF
    Harvest index is a measure of success in partitioning assimilated photosynthate. An improvement of harvest index means an increase in the economic portion of the plant. Our objective was to identify genetic markers associated with harvest index traits using 203 O. sativa accessions. The phenotyping for 14 traits was conducted in both temperate (Arkansas) and subtropical (Texas) climates and the genotyping used 154 SSRs and an indel marker. Heading, plant height and weight, and panicle length had negative correlations, while seed set and grain weight/panicle had positive correlations with harvest index across both locations. Subsequent genetic diversity and population structure analyses identified five groups in this collection, which corresponded to their geographic origins. Model comparisons revealed that different dimensions of principal components analysis (PCA) affected harvest index traits for mapping accuracy, and kinship did not help. In total, 36 markers in Arkansas and 28 markers in Texas were identified to be significantly associated with harvest index traits. Seven and two markers were consistently associated with two or more harvest index correlated traits in Arkansas and Texas, respectively. Additionally, four markers were constitutively identified at both locations, while 32 and 24 markers were identified specifically in Arkansas and Texas, respectively. Allelic analysis of four constitutive markers demonstrated that allele 253 bp of RM431 had significantly greater effect on decreasing plant height, and 390 bp of RM24011 had the greatest effect on decreasing panicle length across both locations. Many of these identified markers are located either nearby or flanking the regions where the QTLs for harvest index have been reported. Thus, the results from this association mapping study complement and enrich the information from linkage-based QTL studies and will be the basis for improving harvest index directly and indirectly in rice

    Worldwide genetic diversity for mineral element concentrations in rice grain

    Get PDF
    With the aim of identifying rice (Oryza spp.) germplasm having enhanced grain nutritional value, the mineral nutrient and trace element concentrations (or ionome) of whole (unmilled) grains from a set of 1763 rice accessions of diverse geographic and genetic origin were evaluated. Seed for analysis of P, Mg, K, S, Ca, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Rb, Sr, and Zn concentrations by inductively coupled plasma mass spectrometry was produced over 2 yr in Beaumont, TX, under both flooded and unflooded watering regimes. The distributions of all element concentrations analyzed were skewed toward higher concentration. A significant portion of this ionomic variation has a genetic basis (broad sense heritabilities 0.14–0.75), indicating an ability to breed for improved grain concentration of all elements except possibly Ni. Variation in grain elemental concentrations was not strongly associated with plant height, heading time, or grain shape, suggesting these physiological factors are not of primary importance in controlling ionomic variation in rice grain. Accessions high in specific elements were sometimes found to have similar genetic or geographic origins, suggesting they share a heritable mechanism underlying their enhanced ionomes. For example, accessions with high Ca, Mg, or K were more common in the indica than in the japonica subgroup; low As was most common among temperate japonica accessions; and several lines high in Mo originated in Malaysia or adjacent Brunei

    Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato

    Get PDF
    Tomato, Solanum lycopersicum, is divided into two widely distributed varieties: the cultivated S. lycopersicum var. lycopersicum, and the weedy S. lycopersicum var. cerasiforme. Solanum pimpinellifolium is the most closely related wild species of tomato. The roles of S. pimpinellifolium and S. l. cerasiforme during the domestication of tomato are still under debate. Some authors consider S. l. cerasiforme to be the ancestor, whereas others think that S. l. cerasiforme is an admixture of S. pimpinellifolium and the cultivated S. l. lycopersicum. It is also not clear whether the domestication occurred in the Andean region or in Mesoamerica. We characterized 272 accessions (63 S. pimpinellifolium, 106 S. l. cerasiforme, 95 S. l. lycopersicum and 8 derived from hybridization processes) were morphologically and genetically using the SolCap platform (7,414 SNPs). The two species were distinguished in a PCA analysis and displayed a rich geographic structure. Solanum lycopersicum var. cerasiforme and S. l. lycopersicum were also differentiated in the PCA and Structure analyses, which supports maintaining them as different varieties. Solanum pimpinellifolium and the Andean S. l. cerasiforme were more diverse than the non-Andean S. lycopersicum. Solanum lycopersicum var. cerasiforme was morphologically and molecularly intermediate between S. pimpinellifolium and tomato. Solanum lycopersicum var. cerasiforme, with the exception of several Ecuadorian and Mexican accessions, is composed of the products of admixture processes according to the Structure analysis. The non-admixtured S. l. cerasiforme might be similar to the ancestral cultivars from which the cultivated tomato originated, and presents remarkable morphological diversity, including fruits of up to 6 cm in diameter. The data obtained would fit a model in which a pre-domestication took place in the Andean region, with the domestication being completed in Mesoamerica. Subsequently, the Spaniards took plants from Mesoamerica to Spain and from there they were exported to the rest of the world.Blanca Postigo, JM.; Cañizares Sales, J.; Cordero Romay, L.; Pascual Bañuls, L.; Díez Niclós, MJTDJ.; Nuez Viñals, F. (2012). Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE. 7(10):1-17. doi:10.1371/journal.pone.0048198S11771

    Rice - Germplasm, Genetics and Improvement

    No full text
    Rice is a staple food for half of the worlds population mostly in Asia. Productivity of rice has largely been improved since the Green Revolution in 1960s. Further improvement of rice yield is necessary to keep pace with population growth, which is a challenging task for breeders. This book, Rice - Germplasm, Genetics and Improvement, as its name implies, comprehensively reviews current knowledge in germplasm exploration, genetic basis of complex traits, and molecular breeding strategies in rice. In the germplasm part, we highlight the application of wild rice in rice breeding. In the genetics part, most of the complex traits related with yield, disease, quality have been covered. In the improvement part, Chinese experiences in hybrid rice breeding have been summarized together with many molecular breeding practices scattering in different chapters

    Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate

    No full text
    In literature, there are few studies which investigated compressive behavior of fibre reinforced polymer (FRP) tube confined recycled aggregate concrete (RAC) where the recycled aggregates (RAs) mainly came from demolished old concrete components. Study which considered FRP tube confined RAC using recycled clay brick aggregates (RCBA) originating from demolished brick masonry components is rare. Thus, this paper reports a systematic study on axial compressive behavior of FRP tube encased RAC containing RCBA (termed as FRP-confined RAC-RCBA). The experimental variables considered are, i.e., replacement ratio of RCBA (r = 0, 50, 70 and 100%), FRP tube thickness (nf=2, 4 and 6 layers) and type of fibre material (GFRP and CFRP). This study shows that both GFRP and CFRP tubes enhanced strength and deformation of the confined RAC-RCBA specimens remarkably. The ultimate compressive stress of the confined specimens decreased with an increase of RCBA replacement ratio but their axial deformation kept approximately constant. Failure mode and the compressive stress-strain behavior of G/CFRP-confined RAC-RCBA were similar to these tube confined normal aggregate concrete (NAC) and the ultimate compressive strength of G/CFRP tube confined RAC-RCBA specimens enhanced with an increase in FRP tube thickness. The CFRP-confined specimens showed higher ultimate strength but lower ultimate axial strain than those of GFRP-confined specimens. The applicability of eight widely used confinement models, i.e., 5 design-oriented and 2 analysis-oriented models, for FRP-confined NAC to FRP-confined RAC-RCBA was also evaluated
    • …
    corecore