1,857 research outputs found

    Web-based computer adaptive assessment of individual perceptions of job satisfaction for hospital workplace employees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To develop a web-based computer adaptive testing (CAT) application for efficiently collecting data regarding workers' perceptions of job satisfaction, we examined whether a 37-item Job Content Questionnaire (JCQ-37) could evaluate the job satisfaction of individual employees as a single construct.</p> <p>Methods</p> <p>The JCQ-37 makes data collection via CAT on the internet easy, viable and fast. A Rasch rating scale model was applied to analyze data from 300 randomly selected hospital employees who participated in job-satisfaction surveys in 2008 and 2009 via non-adaptive and computer-adaptive testing, respectively.</p> <p>Results</p> <p>Of the 37 items on the questionnaire, 24 items fit the model fairly well. Person-separation reliability for the 2008 surveys was 0.88. Measures from both years and item-8 job satisfaction for groups were successfully evaluated through item-by-item analyses by using <it>t</it>-test. Workers aged 26 - 35 felt that job satisfaction was significantly worse in 2009 than in 2008.</p> <p>Conclusions</p> <p>A Web-CAT developed in the present paper was shown to be more efficient than traditional computer-based or pen-and-paper assessments at collecting data regarding workers' perceptions of job content.</p

    Type-Directed Weaving of Aspects for Polymorphically Typed Functional Languages

    Get PDF
    Incorporating aspect-oriented paradigm to a polymorphically typed functional language enables the declaration of type-scoped advice, in which the effect of an aspect can be harnessed by introducing possibly polymorphic type constraints to the aspect. The amalgamation of aspect orientation and functional programming enables quick behavioral adaption of functions, clear separation of concerns and expressive type-directed programming. However, proper static weaving of aspects in polymorphic languages with a type-erasure semantics remains a challenge. In this paper, we describe a type-directed static weaving strategy, as well as its implementation, that supports static type inference and static weaving of programs written in an aspect-oriented polymorphically typed functional language, AspectFun. We show examples of type-scoped advice, identify the challenges faced with compile-time weaving in the presence of type-scoped advice, and demonstrate how various advanced aspect features can be handled by our techniques. Lastly, we prove the correctness of the static weaving strategy with respect to the operational semantics of AspectFun

    Reduction in patient burdens with graphical computerized adaptive testing on the ADL scale: tool development and simulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to verify the effectiveness and efficacy of saving time and reducing burden for patients, nurses, and even occupational therapists through computer adaptive testing (CAT).</p> <p>Methods</p> <p>Based on an item bank of the Barthel Index (BI) and the Frenchay Activities Index (FAI) for assessing comprehensive activities of daily living (ADL) function in stroke patients, we developed a visual basic application (VBA)-Excel CAT module, and (1) investigated whether the averaged test length via CAT is shorter than that of the traditional all-item-answered non-adaptive testing (NAT) approach through simulation, (2) illustrated the CAT multimedia on a tablet PC showing data collection and response errors of ADL clinical functional measures in stroke patients, and (3) demonstrated the quality control of endorsing scale with fit statistics to detect responding errors, which will be further immediately reconfirmed by technicians once patient ends the CAT assessment.</p> <p>Results</p> <p>The results show that endorsed items could be shorter on CAT (<it>M </it>= 13.42) than on NAT (<it>M </it>= 23) at 41.64% efficiency in test length. However, averaged ability estimations reveal insignificant differences between CAT and NAT.</p> <p>Conclusion</p> <p>This study found that mobile nursing services, placed at the bedsides of patients could, through the programmed VBA-Excel CAT module, reduce the burden to patients and save time, more so than the traditional NAT paper-and-pencil testing appraisals.</p

    Mobile Cloud-Based Blood Pressure Healthcare for Education

    Get PDF
    Mercury, pneumatic, and electronic sphygmomanometers were widely used for traditional blood pressure (BP) measurement. Cloud BP database, and mobile information and communication technology (MICT) do not integrate to these BP measurement methods. Pen and papers were employed to record BP values for nurses and physicians, and recording errors are possible to occur. In the chapter, the cloud-based BP platform solution and advanced wireless hospital BP measurement technologies were studied. These cloud-based BT measurement technologies were used as teaching aids to train students of electrical and nursing fields for mobile BP healthcare and health promotion education, and hence interdisciplinary teaching and learning were conducted. The teachers include professors of electrical and nursing fields, physicians, hospital nurses, and the engineer and health management experts of Microlife. The interdisciplinary teaching and learning of mobile BP healthcare and health promotion for smart aging were conducted in the Department of Nursing Division, Chang Cung Memorial Hospital, Keelung Branch, Department of Nursing Ching Kuo Institute of Management and Health, School of Nursing Chung Shan Medical University, and Department of Electrical Engineering, National Taiwan Ocean University. The students of electrical and nursing fields participated for joint interdisciplinary learning. The concepts of interdisciplinary mobile BP healthcare learning and teaching involve nursing and technology, healthy aging, BP health care for smart aging, telenursing, BP care for smart aging, community/home telecare, and MICT. The objective of teaching and learning is training the design and making electrical engineers to understand BP healthcare and health promotion, and nurses to understand mobile BP healthcare and health promotion system for smart aging

    Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system

    Get PDF
    Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis) causes a lethal systemic infection (salmonellosis) in swine. Live attenuated Salmonella Choleraesuis vaccines are effective in preventing the disease, and isolates of Salmonella Choleraesuis with mutations in the cAMP-receptor protein (CRP) gene (Salmonella Choleraesuis ∆crp) are the most widely used, although the basis of the attenuation remains unclear. The objective of this study was to determine if the attenuated phenotype of Salmonella Choleraesuis ∆crp was due to alterations in susceptibility to gastrointestinal factors such as pH and bile salts, ability to colonize or invade the intestine, or cytotoxicity for macrophages. Compared with the parental strain, the survival rate of Salmonella Choleraesuis ∆crp at low pH or in the presence of bile salts was higher, while the ability of the mutant to invade intestinal epithelia was significantly decreased. In examining the role of CRP on the secretory function of the Salmonella pathogenicity island 1 (SPI-1) encoded type III secretion system (T3SS), it was shown that Salmonella Choleraesuis ∆crp was unable to secrete the SPI-1 T3SS effector proteins, SopB and SipB, which play a role in Salmonella intestinal invasiveness and macrophage cytotoxicity, respectively. In addition, caspase-1 dependent cytotoxicity for macrophages was significantly reduced in Salmonella Choleraesuis ∆crp. Collectively, this study demonstrates that the CRP affects the secretory function of SPI-1 T3SS and the resulting ability to invade the host intestinal epithelium, which is a critical element in the pathogenesis of Salmonella Choleraesuis

    Prognostic impact of TP53 mutations and tumor mutational load in colorectal cancer

    Get PDF
    The DNA damage response (DDR) is critical for maintaining genome stability, and abnormal DDR—resulting from mutations in DNA damage-sensing and repair proteins—is a hallmark of cancer. Here, we aimed to investigate the predictive power of DDR gene mutations and the tumor mutational load (TML) for survival outcomes in a cohort of 22 rectal cancer patients who received pre-operative neoadjuvant therapy. Univariate analysis revealed that TML-high and TP53 mutations were significantly associated with worse overall survival (OS) with TML-high retaining significance in multivariate analyses. Kaplan–Meier survival analyses further showed TML-high was associated with worse disease-free (p = 0.036) and OS (p = 0.024) results in our patient cohort. A total of 53 somatic mutations were identified in 22 samples with eight (36%) containing mutations in DDR genes, including ATM, ATR, CHEK2, MRE11A, RAD50, NBN, ERCC2 and TP53. TP53 was the most frequently mutated gene, and TP53 mutations were significantly associated with worse OS (p = 0.023) in Kaplan–Meier survival analyses. Thus, our data indicate that TML and TP53 mutations have prognostic value for rectal cancer patients and may be important independent biomarkers for patient management. This suggests that prognostic determination for rectal cancer patients receiving pre-operative neoadjuvant therapy should include consideration of the initial TML and tumor genetic status

    Task space consensus in networks of heterogeneous and uncertain robotic systems with variable time-delays

    Get PDF
    This work deals with the leader-follower and the leaderless consensus problems in networks of multiple robot manipulators. The robots are non-identical, kinematically different (heterogeneous), and their physical parameters are uncertain. The main contribution of this work is a novel controller that solves the two consensus problems, in the task space, with the following features: it estimates the kinematic and the dynamic physical parameters; it is robust to interconnecting variable-time delays; it employs the singularity-free unit-quaternions to represent the orientation; and, using energy-like functions, the controller synthesis follows a constructive procedure. Simulations using a network with four heterogeneous manipulators illustrate the performance of the proposed controller.Peer ReviewedPostprint (author's final draft

    HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma

    Get PDF
    Carcinogenesis is determined based on both cell proliferation and death rates. Recent studies demonstrate that heat shock proteins (HSPs) regulate apoptosis. HLJ1, a member of the DnaJ-like Hsp40 family, is a newly identified tumor suppressor protein closely related to relapse and survival in non-small cell lung cancer (NSCLC) patients. However, its role in apoptosis is currently unknown. In this study, NSCLC cell lines displaying varying HLJ1 expression levels were subjected to ultraviolet (UV) irradiation, followed by flow cytometry. Interestingly, the percentages of apoptotic cells in the seven cell lines examined were positively correlated with HLJ1 expression. Enforcing expression of HLJ1 in low-HLJ1 expressing highly invasive cells promoted UV-induced apoptosis through enhancing JNK and caspase-3 activation in NSCLC. Additionally, UV irradiation led to reduced levels of HLJ1 predominantly in apoptotic cells. The pan-caspase inhibitor, zVAD-fmk and caspase-3-specific inhibitor, DEVD-fmk, prevented UV-induced degradation of HLJ1 by the late stage of apoptosis. Further experiments revealed a non-typical caspase-3 cleavage site (MEID) at amino acid 125–128 of HLJ1. Our results collectively suggest that HLJ1 is a novel substrate of caspase-3 during the UV-induced apoptotic process
    corecore