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SUMMARY

This work deals with the leader-follower and the leaderless consensus problems in networks of multiple
robot manipulators. The robots are non-identical, kinematically different (heterogeneous), and their physical
parameters are uncertain. The main contribution of this work is a novel controller that solves the two con-
sensus problems, in the task space, with the following features: it estimates the kinematic and the dynamic
physical parameters; it is robust to interconnecting variable-time delays; it employs the singularity-free unit-
quaternions to represent the orientation; and, using energy-like functions, the controller synthesis follows
a constructive procedure. Simulations using a network with four heterogeneous manipulators illustrate the
performance of the proposed controller. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The task space is a subspace of the Special Euclidean space of dimension three, denoted SE(3).
The pose of an object in the SE(3) is composed of the position and the orientation (attitude).
Task space control plays a major role in cooperative tasks performed by a network of multiple
robot manipulators primarily if they are kinematically and dynamically dissimilar (heterogeneous)
[1, 2]. The control objectives in these systems are network consensus [3—5], synchronization [6-9],
flocking [10, 11], and coordination [12, 13]. The practical applications of multi-robot systems span
different areas such as: underwater and space exploration (underwater cultural heritage recovery,
coordination of clusters of satellites, and synchronization of spacecrafts) [14—16]; hazardous envi-
ronments (search and rescue missions, military operations, and robot teleoperation) [17-20] and
service robotics (commercial cleaning, material handling, furniture assembly, etc.) [21-23].

This paper focusses on finding the solution to the leader—follower and the leaderless consensus
problems in networks of heterogeneous robot manipulators with uncertain physical parameters and
interconnecting variable time-delays. In the leader-follower consensus, the objective is to ensure
that all manipulators converge to a given leader pose, while in the leaderless consensus, the robot
manipulators have to reach a certain agreement pose (consensus point). The solutions to these prob-
lems have been widely studied for first and second-order linear time invariant systems [24-28].
Solutions for different nonlinear Euler—Lagrange (EL) systems in the generalized coordinates
(joint space) are reported in [9, 29-35], and in [36-39], for a more general class of nonlinear sys-
tems. [1, 6, 30] present the solution to the the leader—follower case in the joint space, provided
that the leader position is available to all the agents, and [9, 29, 40] propose solutions to the
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leader—follower case in which the leader position is available only to a subset of the followers. [31]
reports a solution to the leaderless case using simple proportional plus damping controllers. [32] pro-
poses a proportional controller and a velocity estimator to solve the leaderless consensus problem.
Recently, Liu et al. [41] have proposed a solution to both consensus problems without intercon-
necting delays, and [35] solves the leader—follower synchronization without interconnecting delays
using an adaptive sliding controller. All these previous results deal with the consensus problems in
the joint space.

Other interesting papers solve the consensus problems accounting only for the orientation (atti-
tude) part. Among these are the following: [7] that provides the solution to both consensus problems
for groups of rigid bodies in the presence of communication delays; [42] that provides three synchro-
nization cases for the attitude alignment of spacecrafts; [43] where a passivity-based velocity input
law is developed to achieve attitude synchronization; [44] that solves the attitude leaderless consen-
sus without interconnection delays; and [45] that, using passivity-based controllers, solves a group
orientation agreement in networks of rigid bodies provided the interconnection graph is undirected
and without delays. However, for multiple degrees-of-freedom (DoF) mechanical systems, position,
and orientation dynamics cannot be decoupled —because the inertia matrix is not, in general, block
diagonal— and thus, the complete pose dynamics are needed for a formal stability analysis.

Some few exceptional works in the literature that deal with the complete pose consensus are the
following: [1] that employ a minimal orientation representation for the leader—follower consensus;
[46] that tackles the bilateral teleoperation of a network of multiple robots, a problem that can be
seen as a special case of the leaderless consensus case; [47] that employs unit-quaternions and a PD
plus damping and gravity compensation scheme for bilateral teleoperators with constant delays; [8]
that solves the leaderless and leader—follower consensus problems using only a first order nonlinear
kinematical model in the SE(3); and [12], where a dual quaternion solution is provided for the coor-
dination of the pose of rigid body networks. The last two works obviate the second order dynamic
model, and they only deal with the kinematic model, without accounting for parameter uncertainty.
Furthermore, in [2], it shown another solution to both problems without relying on velocity mea-
surements; however, such work does not deal with parametric uncertainty, and it is not robust to
interconnecting delays.

This work is closely related to two insightful papers [48, 49]. On one hand, [48] using similar
kinematic and dynamic adaptation schemes as in [50, 51], solves the leader—follower consensus
provided that the leader position is available to all the agents and, on the other hand, [49] solves
the leaderless consensus problem without time-delays. Furthermore, for the orientation, these works
make use of a minimal representation that exhibits singularities, and it is assumed that all the agents
are kinematically similar, that is, all agents have the same DoF.

The main contribution of this work is a novel controller that solves the leader—follower and lead-
erless pose consensus problems for heterogeneous robot networks with uncertain kinematic and
dynamic parameters. The main features of the proposed scheme are the following: it estimates
the kinematic and the dynamic physical parameters; it is robust to interconnecting variable-time
delays; it employs the singularity-free unit-quaternions to represent the orientation; and, using
energy-like functions, the controller synthesis follows a constructive procedure. Moreover, in the
leader—follower case, it is only assumed that at least one agent can access the leader’s pose. Up to
the authors’ knowledge, this is the first work that solves these consensus problems with all these
features. Furthermore, in order to show the performance of the proposed scheme, simulations using
a network with four heterogeneous agents are also presented.

The following notation is used throughout the paper. R := (—o00, 0), R+ := (0,0), Rz :=
[0, 00). |x| stands for the standard Euclidean norm of vector x. I and @ represent the identity
and all-zero matrices of size k x k. Both 1; and 0 represent column vectors of size k with all
entries equal to one and to zero, respectively. The spectrum of the square matrix A is denoted by
0 (A) where the minimum and the maximum of its spectrum are denoted by 0pin(A) and oyax(A),
respectively. For any matrix A € R AT(AAT)~! is its Moore—Penrose pseudo-inverse matrix
denoted by AY. For any function f : R>g — R”, the Loo-norm is defined as ||f]|oo := sup |£(¢)],

t=0

=

Lo-norm as [f]> == (fy° |f(t)|2dt)1/2. The L and £, spaces are defined as the sets {f : Rz —
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R"| |[f|lco < oo} and {f: R>o9 — R”| ||f||l2 < oo}, respectively. The argument of all time dependent
signals is omitted, for example,_x = x(t), except for those which are time-delayed, for example,
x(t — T(¢)). The subscripti € N :={1,..., N}, where N is the number of nodes of the network.

2. SYSTEM DYNAMICS

The dynamical behavior of the network accounts for a threefold: i) the dynamics of nodes, which are
represented by EL-systems; ii) the interconnection topology, which is modeled using graph theory;
and iii) the orientation description in the SE(3), which is performed using unit-quaternions.

2.1. Node dynamics

The ith-node is modeled as n;-DoF robot manipulator®. Its EL-equation of motion, in joint space,
is given by

M; ()4 + Ci(q;. ;)4 +gi(qi) = 7; (H

where q;, q;, q; € R", are the joint positions, velocities, and accelerations, respectively; M; (q;) €
R”i*"i js the symmetric and positive definite inertia matrix; C; (q;, ¢;) € R">*"i is the Coriolis and
centrifugal effects matrix, defined via the Christoffel symbols of the first kind; g;(q;) € R" is the
gravitational torques vector and 7; € R" is the torque exerted by the actuators (motors).

The pose of the i th-end-effector, relative to a common reference frame, is denoted by the vector
x; C R7, and it is composed of the position vector p; € R> and the orientation unit-quaternion®

1e
&, € S3, such that x; := [p;r,gT]

1
The kinematic relation between the joint velocities and the linear p; and angular @; velocities of
the 7 th-end-effectors relative to a common reference frame, is given by

1

I D T
v; = |:w :| = Ji(qi)q; ()

where v; € R® and J;(q;) € R®*" is the geometric Jacobian matrix.

It is assumed that each manipulator is an open serial chain with a certain combination of revo-
lute and prismatic joints such that the inertia matrix is lower and upper bounded [52]. Under this
assumption, the EL-system (1) enjoys the following properties [53-55]:

P1. Forall g; € R, exist M, M; € R-q such that M; < |[M;(q;)|| < M;.

P2. Matrix M; (q;) — 2C;(q;, q;) is skew-symmetric. )

P3. Forany ¢; € R", (1) satisfies M;(q;)¢; + Ci(q;. 4:)p; — i (qi) = Ypi (4;. 4i. ;. 9;) 0 pi,
where Yp; € R"*™Di is a regressor matrix of known functions, and 0 p; € R™Pi is a constant
vector containing the dynamical parameters (link masses, moments of inertia, etc.).

P4. For all q; € R", the Jacobian matrix J; (q;) is a bounded operator.

P5. The kinematic relation (2) satisfies v; = Yk;(q;.q;)0 ki, where Yg; € R®*™Ki is the kine-
matic regressor matrix, and 6 g; € R™Ki is a constant vector containing the kinematic physical
parameters (link lengths, center of mass distances, etc.).

2.2. Modeling the interconnection

The interconnection of the N followers is modeled using the Laplacian matrix L := [{;;] € RV*V,
whose elements are defined as

JEN; 3

2 wij i=]
by = L
—wij 1 F ]

¥Note that each robot may have different number of DoF.
SThe set S3 C R represents an unitary sphere of dimension three and it is defined as §3 := {&§ € R*| |§]% = 1}.



E.NUNO, C.1. ALDANA AND L. BASANEZ

where N is the set of agents transmitting information to the ith robot, w;; > 0 if j € N; and
w;; = 0 otherwise.

Similar to passivity-based (energy-shaping) synchronization [4, 56-58] and in order to ensure
that the interconnection forces are generated by the gradient of a potential function, the following
assumption is used in this paper:

A1l. The followers interconnection graph is undirected and connected.

Remark 1

Note that, by construction, L has a zero row sum, that is, L1y = 0y. Moreover, Assumption A1,
ensures that L is symmetric, has a single zero-eigenvalue and the rest of the spectrum of L has
positive real parts. Thus, rank(L) = N — 1.

In the leader—follower scenario, the Laplacian matrix models the followers interconnection and a
diagonal matrix A € RV>¥ is used in this work to model the leader—follower interconnections. The
following lemma, which is a special case of Lemma 3 of Hong ef al. in [59] and Lemma 1.6 of Cao
and Ren in [60], provides an interesting property of the composed Laplacian matrix L, := L + A
that will be used in the proof of one of the main results. In fact, Lemma 1 provides a powerful tool
for the controller design because, compared with other previous schemes —see [1, 30, 48, 61], to
name a few— the leader—follower consensus problem (defined in Section 3.1) can be solved without
assuming that the leader pose is available to all the followers.

Lemma 1

Consider a non-negative diagonal matrix A := diag(ai,...,an) € RY*N and suppose that, at
least, one a; is strictly positive, that is, there exists some a; > 0. Assume that A1 holds, then the
matrix Ly := L 4 A is symmetric, positive definite and of full rank. o

With regards to the interconnection time-delays, similar to other passivity-based schemes [62], it
is assumed that:

A2. The information exchange, from the j-th agent to the i-th agent, is subject to a variable time-
delay T7;(r) with a known upper-bound *7’j;. Hence, it holds that 0 < 77; (1) < *T;; < oo.
Moreover, T}; (t) is bounded.

For practical applications, if the time-delays are not known, then the first time-derivative of
the delays can be computed using the following method. Along with the pose and the veloc-
ities, the value of a function f(¢) is sent through the communications. And then, when f(¢)
arrives to its destination, it has the value f(r — 7T'(z)). With this data, f(t) can be computed
at both ends, indirectly, from the fact that f'(t — T()) = [1 — TO)f (¢). The way to do it
is to design f(7) such that f(zr) = 1. In such a case, T(t) = 1 — f(t — T(r)). Finally,
f(t — T(t)) is calculated numerically and hence, 7(f) can be obtained without knowledge
of T(t).

2.3. On representing the orientation

Compared with other orientation representations, for example, yaw-pitch-roll parameters, Euler
angles, etc., the unit-quaternions are known to be free of singularities [63]. A unit-quaternion
&, € S can be split in two elements: one scalar term 7; € R and one vectorial term B, € R3.

T
Thus, &; := [ni,ﬂ;—] and, from the unit norm constraint, 771-2 + ﬂ;—ﬂi = 1 (refer to [64, 65] for a

detailed list of properties and operations involving unit-quaternions). The unit-quaternion &; can be
easily obtained from the rotation matrix R; € SO(3) := {R; € R¥3| R[R; = I3, det(R;) = 1}
[54]. Similarly, the Rodriguez formula [45] allows to obtain a rotation matrix corresponding to a
given quaternion as
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Ri(6) = (17 — BT B:) T + 28,87 —20:S(B). )

where S(-) is the skew-symmetric matrix operator.

The orientation error, relative to the world frame, between two different frames, X; and X ;, can
be described by the rotation matrix R, i =Ry RT € SO(3). The unit-quaternion describing such
orientation error is given by

e * ﬁij [ ETﬂ i :|
ss = - @ . = ~ = 1 J
§ij =4 E’ |:ﬂij:| L n;Bi —niBj —S(B:)B; )
_ [ miny +ﬂ?ﬂj}
| —UT(§)E,
- T T
where © denotes the quaternion product, & E‘,) = |1y, —B (_)] is the quaternion conjugate of §
and U(&,;) is defined as i
U B/ 6
L) = i .
&= s, ©

The normality condition and some straightforward calculations show that ﬁi ; = 0if and only if
&, = & ;. This, in turn, implies that U’ (§,)& ; = 05, this last due to the fact that

UT(EDE = [ mils +S(B))] [Z’;] 0, @

where the property S(a)a = 03 is used. A key observation is that §; = § ; and §; = —§ ; represent
the same physical orientation [7, 45]. In fact, using (4), it can be easily established that R;(§;) =
R;(§;) ifandonlyif §; = +§& ;.

The relation between the time-derivative of a unit-quaternion and the angular velocity, relative to
the world reference frame, is given by

. 1
£ = —U(é'i)wi- (®)
Hence, defining @ (§;) := diag (I3, 2U(£,)), it holds that

X; = ®(&;)v;. €))

The following properties have been borrowed from [12, 66—68] and are used throughout the rest
of the paper.

P6. Forall §; € S3, UT(‘g' YU(E;) = 1. Hence, rank(U(§;)) = 3 and ker(UT (&;)) = span (£,).
P7. Forallé; € S®and §; € R*, U(§;) = U(§,).
P8. Because, forall §; € S3,|&;| = 1 then U(£,) is a bounded operator.

Note that P6 implies, from (8), that |@; |> = 4|&,|>.

3. CONSENSUS IN THE TASK SPACE

This section presents the formal statement of the leader—follower and the leaderless consensus
problems together with our main results, which are the solutions to both problems.

IFor any a,b € R3, S(a)b = a x b. Some well known properties of the skew-symmetric matrix operator, S(-), used
throughout the paper, are S(a) | = S(—a) = —S(a) and S(a)a = 0.



E.NUNO, C.1. ALDANA AND L. BASANEZ

3.1. Problem setting

Consider a network of N heterogeneous EL-systems of the form (1). Assume that the inter-
connection graph fulfills Assumptions A1 and A2. Furthermore, suppose that the kinematic and
the dynamic physical parameters are uncertain. In this scenario, find the controllers to solve the
following two consensus problems:

(a.) Leader-Follower Consensus Problem (LFCP): TheT network of N followers has to be regu-
lated at a given constant leader pose x; := [PZ7 & 2] C R7, provided that the leader pose is
only available to a certain nonempty set of followers. Hence, for all i € N,

lim |v; ()| =0, lim x;(¢) = xg. (10)
t—o00 t—o00

(b.) Leaderless Consensus Problem (LCP): In the absence of a leader, the network of N followers

¢
has to asymptotically reach a consensus pose, denoted X, := [p:, E;r] C R’. Hence, for all
ieN
lim |v; ()] =0, lim x;(¢) = x,. (11)
t—00 t—>00

3.2. Leader—follower consensus problem

As mentioned in the problem statement, this paper makes the following assumption for the leader—
follower interconnection:

A3. At least one of the N follower robots has direct access to the leader’s pose x¢, that is, in the
graph of N 4 1 nodes, being node zero the leader node, there exists at least one directed edge
from the leader to any of the N followers.

Assumptions A1 and A3 ensure that the leader pose is globally reachable from any of the N
follower nodes, that is, there exists a path from the leader to any follower robot.

Considering that the kinematic and the dynamics physical parameters are uncertain, and using
(2), together with P3 and PS5, it holds that

Ji(@)@ = Yki(qi.4)0 ki (12)

and M; ()¢, +Ci (01, ), —8: (1) = Yi(ai. 4. 6;. $,)8 pi, where ¢, € R™ is a differentiable
signal that will be defined later, 0 ki € R™Ki and ] pj € R™Pi are the kinematic and the dynamics
estimated physical parameters, respectlvely Ji (q:), M, (qi), G (qi, q;) are the estimated Jacobian,
inertia and Coriolis matrices and g; (q;) is the estimated gravity vector.

Setting-up the controller

1 = —Ypi (qi.6i. 6. 9;) 0 pi — KiJ (a)Ji (@)ei. (13)
where K; € R and
€ =q +¢;, (14)
yields the following closed-loop system
M; (q:)é; + Ci(qi. di)e; + KiJ (a)Ji(ai)ei = Ypif pi. (15)

with éDi =0p; — éD,'.
As usual in the adaptive control design, consider the following energy-like function

1 o
vi=s [e,TM,-(q,-)ei +0DirD1.oD,-], (16)

where I p; = I'Bi > 0. Evaluating v along (15), using P2, the fact that éD,- =0 pi and defining
the dynamic parameters adaptation law as
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i =T p;Y )€, (17)
yields
Vi = —KilJi(q)ei* <0. (18)

Interestingly but not surprising, because V; is positive definite and radially unbounded with
regards to €; and 01), and V; < 0, the signals J, (qi)€; € L5 and €, GD, € Lo for any choice on
the differentiable function ¢;. . .

Now, pre-multiplying (14) byAJi (q;) and using (2) and (12) yields J;(q;)e; = v; + Ji(q;)9; +
Yki(qi,q;)0 ki, where 0 x; = 0 x; — 0 k;. Hence, V; can be rewritten as

. A Y ~T 3 ~
Vi = =K [ Jvi + (@)@ + Vi (a0 @00 ki | - 2K g Y@ @) [vi + Ji(a9 |
The form of V; motivates to propose the following function
1 -
WiZ_Vt+0KHK 0xi, (19)
K;
where I' g; = I’L- > (. Thus, setting the kinematic parameters adaptation law as
Oi =T kY, (qi. &) [Ui +ji((Ii)¢i]s (20)
ensures that
Wi = —|vi > =20/ Ji(a)9; — 13 ()9; 1 — | Y ki (€. )0 ki[>

Because v; is the linear and angular velocities vector, the crossed term vl.Tji (q;)¢; in the last
equation, suggests the design of ¢; as a function of the pose error. Hence, let us define

¢ = J@)eT&)e @)
where e; is the pose error, between each manipulator with its leader and its neighbors, given by
e i=a;(xi —x¢) + Y wislxi —x;(t — Tji(0)]. (22)
JEN;

where a; > 0 if the leader’s pose X is available to the ith manipulator and a; = 0, otherwise. J :r is

the Moore—Penrose pseudo-inverse of J; and it s given by jj = le (j,jl—'—)_
Such definition of ¢;, together with (9), ensures that

Wi = —|vi > — |07 (&,)ei|> — |Yki0 ki > — 2% e (23)
Let us propose the total energy-like function H; as
1
Hi =W +ailxi —x¢|* + = Z wij[x;i — x| (24)
2 JEN;

Using (22) and (23), H; is given by

Hi=—|vi? =@ (€ )ei|> — Vi kil — 2% (i —ai(xi —x0)) + Y wij(xi —x;) " (ki —X;)
JEN;
and using the error definition (22) results

Hi=—|vil> =17 ¢E)ei* — [Yeibkil> =2 ) wyk! (% —x;(t — Tji()+

JEN;
+ Z wij (xi —x;) 7 (% —%;).
JEN;
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From the fact that ftt_le_(t) X;j(0)do = xj —x;(t — T;;(¢)) and doing some simplifications,
finally yields

~

Hi = —|vi>—|® T (E)ei P~ |Ykib ki P— D wij | 2] xj(0)do + (i + %) T (xi —x;)

JEN =T (0)
The last term (5(,- + f(j)T (x; —X;) can be expressed as

(Xi +xj) xi —x;) = —XIT (xi —xj) +x;r(x,~ —X;) —x;l-—x‘,- + x;rx,-,

defining Q := [XIXI, .. ,x;i{N]T, using (3) and because Z_ X/\:/ wij(Qi — Q) = ILLQ =0,
ieN JEN;
it is straightforward to show that l

SN wy (ki +%) i —x) =x" (L-LT)®I;)x=0

ieN JEN;
T . ) 1T . . .
where x := [x{.,....x}] .%x:=[x].....x5] €R7¥. Hence, taking{ = > H,; and invoking

ieN
P6, it holds that

t

H=—> | &> +3&1P+[®TEDei + [Yxibil> +2 ) wij»z?/ %j(0)do
ieN JEN; T
(25)
‘H does not qualify as a Lyapunov Function, that is, it does not satisfy ’H < 0. And then, in the
same spirit as in [31] and in order to get the below inequality, we integrate 7 from O to ¢ and apply

Lemma 1 of [55] to the double integral terms with ; € R~ . This yields

~ 1 *T2
T 2 2 <2 Jije 112
HO) = HO+Y |10 EDe |3 + IYkibxil3 + D wi,-[(;—ai) I%illz = —= 1%, 12 | |
ieN JEN; " !
where the fact that £;; := ) wj;; has also been used. Defining the matrix ¥ € RNV a6
JEN;
B win* T3 win* TR ]
1 — L0 e T T o
wio*TZ won *T?
N _% 1 — Loy --- _%
wiN*T? wo N *T?
= II\;NIN _ ZA;NZN o l—tyyay |

. ~ . . T
yields H(0) = H(0) + ¥ (1@ Eeill3 + 1Yk l3) + 179 [I%al3.... 1w 3]

ieN
Setting all o; and the interconnection weights w;; such that

1>Zw,~j o; +

JEN;

* 2
Tij
ozj ’

then there exists p € RY, defined as noi= \I’TIN, such that u; > 0, foralli € N . Hence,
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HO) = 1o + D (107 Eell3 + 1Yk kil + pal:13)
ieN

Because (0) is a positive constant and H(r) > 0, then ® T (¢ l-)e,-,YK,ﬁ Ki-Xi € Ly and H €
Lo Furthermore, # is positive definite and radially unbounded with regards to €;, 0 p;, 0 ki, |x; —
x¢|, |X; — X[, hence, H € L ensures that all these signals are also bounded.

On one hand, P8, x; € £, and 0 k;, |x; —x¢l, |[X; —Xj| € Loo, foralli € N and j € N;, together
with P4 imply that <I>T(§l~)e,~,¢,~ € L. On the other hand, €;,¢; € L ensures that ¢; € Lo,
which together with P4 and P8, implies that X; € L.

Using (22), it can be shown that &; = a;%; + > wjj [5(1' —(1- Tj,'(t)))'(j (r — Tji(t))], and

JEN;
boundedness of X; and A2 support the fact that €; is also bounded. Furthermore, ¢ ; satisfies

. _;T . st d .
b = J; @)@ e + Tl @)+ (276 )er)

I e [T . @7)

= Ji @)@ E)e + 5 @) [ @ Eer + 2T (€& ]
Hence assumption A2, properties P4 and P8 and boundedness of (;, X; and €; imply that ¢ i € Lo
and, consequently, % (<I>T(§,-)e,-) € Loo-

Now, boundedness of all these signals ensure, from the closed-loop system (15), that €; €
Loo. Because é = {; + §;, @ € Loo. Furthermore, % = @7 (&) [Ji (@i + Ji(a)a | +
<i>T(E,-)J,~ (q:)q;, thus P4, P8 and x;, q;, §; € Lo ensure that X; € L.

Finally, <I>T(§,~)e,~,}k,- € L, N Ly and % (<I>T(§i)e,~), X; € L yields, by Barbélat’s Lemma,
lim |<I>T(§i(t))ei ()] =0, lim |x;(z)| = 0 and, from P6, lim |v;(¢)| = 0.
t—>00 t—00 t—00

Before presenting one of the main results, it should be mentioned that, although &; = &, and

&, = —&, represent the same physical orientation, the closed-loop system (15) has two possible
equilibria. However, &, = —&, corresponds to an unstable equilibrium point.

Remark 2 _

In order to obtain an interpretation of the stability condition (26), first set, for alli € N, o; = «

*T2

for any @ > 0. In this case (21) transforms to 1 > Y~ wj;j (a + #) Doing some algebra and
JEN;
noting that £;; := Y w;;, we obtain the inequality {;;a* —a + Y w,'j*Ti? < 0.

JEN; JEN;
Clearly, such inequality is satisfied if there exist real solutions for the second order equation
> —a+ Y wij*Tl% = 0. In fact, such solutions exist if and only if 1 > 4¢;; " wij*Tl%.

JEN; JEN;

This last inequality is equivalent to (26). Because the bounds of the time-delays are given a priori,
the only free parameters in this last inequality are the interconnection weights. Obviously, when
delays are negligible any interconnection weights satisfy this inequality. However, for large delays

the interconnection weights have to be small.

Proposition 1

Suppose that Assumptions A1, A2, and A3 hold. Additionally assume that, for any «; > 0, condition
(26) holds. And then, the controller given by (13), (14), (21), and (27) together with the dynamic
and kinematic parameter adaptation laws (17) and (20), respectively, solves the LFCP everywhere
except when (x; (0), p; (0), £,(0)) = (07, p;, —&,) foralli € N.

Proof
First, note that tl_l)rlgo |x;(t)| = 0 implies that ftt—ij(z) Xj(o)do = x; —x;(t — T;;(t)) = 07. This
and <I>T()‘;‘,- )e; = 0 ensure that
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ai(pi —pe) + Y wij(pi —pj) = 03, (28)
JEN;

aiUT(E)E -+ D> wiUT(E)E —&)) =05 (29)
JEN;

On one hand, defining p := [p—lr, .. ,p—'A—,]T allows to rewrite (28) as (A @ Iz)(p — (1xy ® pr)) +
(L ® Is)p = 035 and, with the fact that L1y = Op, (28) can be further written as (L; ® I3)(p —
(1ny ® p¢)) = O03n, where A and Ly are defined in Proposition 1. Further, Proposition 1 and the
Kronecker product properties ensure that rank(L; ® I3) = 3N. Thus, foralli € N, p; = pq is the
only solution to (28).

T _
On the other hand, defining & := [EIT .. l;'x] and U(§) := diag(U(&,),....U(y)) €
R4N>3N (29) can be written as

UTE)ARL)E— (v ©£)) +UTEL @ L)(E — (Iy ® &) =0z

or, what is the same, UT(&) (L, ®L)(E—(1y ® &) = 03y. Definingy := (L; @ I)(§ — Iy ®
&,)), yields UT(&)y = 03y. This equation has only two possible solutions, namely y = 04y or
y eker(UT (§)).

The first solution y = 04, implies that € = (1x ® &), because (Ly ® I4) is of full rank. Hence,
this implies consensus at &; = &,.

From Property P6, the second solution y eker(UT (£)), implies thaty = (A ® I4)&, for A =
diag(8;) € RVY*N  Now, because Ly is of full rank, its inverse always exists, therefore the second
solution is of the form

E=(Iy—L'A) "0 L) (Iy ® &)).

This expression implies that & is a linear combination of the vector (1y ® &;). Finally, the normality
condition of the quaternions, yields the second solution to (29) as &§; = +&,, foralli € N.

Using (24) it can be easily shown that &, = &, corresponds to a minimum energy point
and, because H(¢) is a decreasing function, that is, H(0) = H(¢) for all ¢+ = 0, any pertur-
bation in the other equilibrium point §; = —§&, will drive the system to §; = §&,. Hence,
(vi,pi. &;) = (06,p¢, &,) is asymptotically stable everywhere except at the unstable equilibrium
point (v;, pi, &;) = (06, p¢, —& ;). This concludes the proof. O
Remark 3

With similar assumptions to [1, 30, 48], the controller used in Proposition 1 can also solve the
leader—follower problem for a dynamic leader provided that the leader trajectory is available (with-
out delays) to all the agents and that it is bounded up to its third derivative. In such a case, the pose
error (22) becomes

e = —Xe+ % + ) wilxi —x;( = Tji(1))]
JEN;

where X; := x; —xgandaq; > 0, foralli € N.

3.3. Leaderless consensus problem

The LCP is solved using the same controller as in the LFCP with the only difference being the
absence of the leader and thus a; = 0, foralli € N.

Proposition 2

Suppose that Assumptions A1 and A2 hold. Additionally assume that, for any «; > 0, condition
(26) holds. And then, in the absence of a leader, the controller given by (13), (14), and (21) together
with the dynamic and kinematic parameter adaptation laws (17) and (20), respectively, solves the
LCP everywhere except when (%; (0), p; (0). &;(0)) = (07, p.. —£,) foralli € N.
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Proof
The proof follows verbatim the proof of Proposition 1, and hence, only the main steps are given.
In this case, ¢; = 0 and the error equation (22) becomes e; = Y wj;[x; — x;(t — T};(1))].
JEN;
Furthermore, the total energy-like function (24) transforms to H; = W; + % > wijlxi —X; 2.
JEN;
Taking H = ) H;, yields the same time-derivative as in (25). Following the same procedure as in
ieN
Section 3.2, by Barbélat’s Lemma, it is proved that tlim |<I>T(.§,~ (t))e; ()| = 0and tlim |x; (t)| = 0.
—00 —00
In this case, (28) and (29), respectively, become

> wij(pi —pj) = 03, (30)
JEN;
> wyUT(E)(E; — &) = 0s. 31)

JEN;

On one hand, (30) can be written as (L ® Is)p = 03x. Because rank(L ® I3) = 3(N — 1),
p = (1y ® p¢) is the only solution to (30), for any p. € R3.

On the other hand, in matrix form, (31) is equal to UT (£)(L ® I4)& = 03x. Because rank(L) =
N — 1, the only possible solution to the equation (L ® I4)§ = 03y is § = (1y ® &), for any
§,e8S3

Now, from the fact that UT (£,)&; = 03, (31) can be written as Y wijUT (§,)& ; = 03. There-

X,
fore, there exists other possible solutions to (31) of the form & i =j 8;&;, for any §; € R. This last
and the normality condition imply that §; = £&, foralli € N.

Furthermore, §; = &, corresponds to a minimum energy point and because H(t) is a
decreasing function, any perturbation in §; = —&_ will drive the system to §; = &_.. Hence,
(vi,pi, &;) = (06, pc, &,) is asymptotically stable everywhere except at the unstable equilibrium
point (v;, pi, &;) = (06, pc, —& ). This concludes the proof. O

Remark 4
When the interconnection time-delays are negligible, the pose error (22) becomes €; = a;(x; —
x¢) + > w;j(x; —X;) and thus (25) yields

JEN;

Ho== Y [l + 31612 + 10T el + [Yxifxil?)].
ieN
In this case, the proof of the solution to both consensus problems can be easily established
invoking LaSalle’s Invariance Theorem.

Remark 5

Following the same idea as in [1, 69] and because the robot manipulators often are redundant, that
is, n; > 6, the proposed controller can be designed to solve the consensus problems and, at the
same time, to perform a subtask objective (e.g., mechanical limit avoidance or obstacle avoidance).
For example, let us propose the subtask error as e5; := [Ini — j:.r(q,-))j,- (q,-)] (q; — qqi), where
qai € R is the desired velocity of the subtask. As usual in trajectory tracking control, qg; is
assumed bounded up to its third derivative.

Redesigning (21) as ¢; = J] (@)@ (€,)e; — [, — J] (@)Ji(@) | dar it holds that Ji (a:); =
<I>T(§ ;)ei, where the property of the Moore—Penrose pseudo-inverse matrix j,- (qi)jZ(qi) = I

has been used to obtain this expression. Thus, the rest of the proof remains the same for each
consensus problem with the additional fact that e;; converges to zero by noting that, in this case,

& = a; + 3] (@)@ ¢ e - 1, — @it ] dur.
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Thus, pre-multiplying the previous equation by [Ini —j;r(q,-)ji(qi)] yields

[Ini - j;r(qi)ji (q,-)] €; = &, hence, if €; converges to zero so does eg;.
_ It should be underscored that the motions in the joint space because of qg; lie in the null space of
Ji(q;); thus, they do not induce any motion in the SE (3).

3.4. Human-robot interactions

In the case that human torques, T;, € R are injected into one or multiple robots, the dynamic
equation (1) changes to

M;(q)d; + Ci(qi. qi)q; +8i(qi) = Ti +ciTp,;, (32)

where ¢; = 1 if a human interacts with robot i and ¢; = 0, otherwise.

When the human operator applies some forces, the equilibrium point is changed. However,
because in the leader—follower case, the equilibrium point (v;, p;, &;) = (06, p¢. &) is almost glob-
ally attractive, once the human forces become zero, all robots converge asymptotically to the point
(U )

In the leaderless case, the equilibrium point (v;, pi, &;) = (06, Pc, &.) is almost globally attrac-
tive for some p, € R3 and &, € S3. When the human operator applies torques, to one or multiple
robots, the consensus point is dynamically changed and when the human forces become zero, if the
robots are not in consensus, they find another consensus point that might be different from the origi-
nal point. This fact increases the applicability of the leaderless consensus algorithm in the sense that
the robot network can be driven by one or multiple human operators, which allows a wide range of
practical implementations such as formation control or teleoperation of networks of robots by one
or multiple operators.

In this scenario, the following controller, derived from (13), is proposed

T = ~Yp; (4. 4i.9;.9;) 0 pi — Kiei. (33)
The closed-loop system (32) and (33) is
M;(q)é; + Ci(qi. di)ei + Kie; = YpiOpi +citp;. (34)

Proposition 3

Consider the leaderless scenario and a robot network in which the kinematic and the dynamic param-
eters are uncertain and Assumptions A1 and A2 hold. Moreover, one or multiple human operators
inject forces in one or multiple robot manipulators whose dynamics satisfy (32). And then, if the
joint torques injected by the human are bounded, that is, 7j,; € Lo, the controller given by (33),
(14), and (21) together with the dynamic and kinematic parameter adaptation laws (17) and (20),
ensures that €; € Lo, foralli € N.

Proof
Using (16) and evaluating V; along (34) yields V; = —K;|€;|? + cie;'—rh,i. After applying Young’s
inequality, on the last term of the previous equation, it holds that

2 K; 2 |2
Vi < —Kile] +Ci7|€i| + ¢

|Th,i
—_— 35
2K, (35)
Note that if ¢; = 0, then V; < 0 and boundedness of €; follows directly. However, if ¢; = 1, then
(35) can be simplified to
Ki o ltwil?
5 le;|” + 2K

Vi <
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Because 75,; € Loo, then there exists y; > 0 such that |7j;|> < y;. Therefore, if |€;|* > % then

V; < 0. This last and the fact that V; is positive definite and radially unbounded with regards to €;
ensure that €; € L. This concludes the proof. O

4. SIMULATIONS

This section provides simulation results that show the effectiveness of the proposed consensus algo-
rithms. Figure 1 depicts the simulated heterogeneous robot network, for the leader—follower and
the leaderless consensus problems. It is composed of one 2-DoF (node 1), one 3-DoF (node 3) and
two OMNI robots (Sensable, Wilmington, Massachusetts, United States), each with 3-DoF, (nodes
2 and 4). Table I presents the physical parameters and a description of these robots. The simula-
tions have been carried out using Matlab’s Simulink version 8.1. The direct kinematics of the robot
manipulators are given by the following homogeneous matrices H(q) € R4+*4.

0 -1 0 0
si2 0 ci2 hier 4+ heas
H =
2poF (@) —c12 0 s12 licr + oo
0 0 o0 1
0 -1 0 0
- (@ = s123 0 ci23 lLicr +laeas +13c123
3or () = —c123 0 s123 licr + lheas + [3c123
0 0 o0 1
[ —s1523 —c1 —s1c23 —s1(lic2 + [c23)
Homn (@) = c1823  —s1 cic3  ci(lica + 1hca3)
o) = —c3 0 523 l152 + 12523
0 0 o0 1

where the notation ¢z, €123, S12, and §123 are abbreviations for cos(q; + ¢2), cos(q1 + g2 +
q3), sin(q1 + ¢2), and sin(q; + g2 + g3), respectively. The unit-quaternions have been derived
from the rotation matrices following the algorithm proposed in [70]. The Jacobian matrices are
given by

©00 ©0
00 oo

Leader = Follower Leaderless

Figure 1. Simulated robot network and the two corresponding interconnection graphs.
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B 0 0
—ly812 — 1151 — 38123 —128512 — 135123
lyera +lici + 13¢123 lac1a +13c123

0 0
L 0 0
B 0 0 0
—l3812 — l151 — 138123 —12512 — I35123 —135123
lrc12 + licr + Izc lre1z + I3¢ l3c
Yapor(q) = | 212 111 3¢123 [acr2 1 3123 I3 1123 : (36)
0 0 0
0 0 0

[ —=s1(lica + l2¢23) —c1(l152 + [2523) —l2c1523
ci(lica + 1ac23) —s1(lica + l2c23) —l251523

0 lreo + Ihe lre
Jomni(q) = 0 22 ¢l 202 2c123

0 S1 81

1 0 0

The kinematic regressors, Y x (q, ) are as follows:

0 0
—s141 —S1241 — S1292
€141 C1241 + C1242

Yk 2DoF = 0 0 ;
0 0
0 0
0 0 0

—S5141 —S1241 — S1292 —S123¢1 — 12342 — 512343
€191 C1241 + c12q2  c1239 + C123¢2 + C12393

Yk 3poF = 0 0 0 ;
0 0 0
0 0 0

$15242 — C1€241  $2351G2 — €23€141 + 5235143
—C2€141 — C182¢42 —C238141 — $23C142 — $23C143

Y — €242 €23q2 + 2393
K,OMNI =
0 0
0 0
0 0
The kinematic parameter vectors are defined as @ k. opor = [l1,02], Ok 3p0oF = [l1,02,13]
and Ogouny = [l1,[2]. The initial condltlons for the estimated kinematic parameters are set

to as follows: 0 . 2por (0) = [0.03,0.02]", 0 k3p0r (0) = [0.08,0.11,0.08], @ x opni,(0) =
[0.05,0.01]T, and é x.omni (0) = [0.04,0.02] T, where OMNI, and OMNI4 means OMNI of node
2 and OMNI of node 4, respectively.

The nonlinear dynamic models of the robot manipulators are omitted for brevity but they can be
found in [1, 46, 71]. The initial estimated dynamic parameters are set to zero. The variable time-
delays between the nodes have been set to 7;; = p + a1sin(91t) + azsin(P¥,t), and in Table II are
listed the values of the parameters for all the interconnection’s delays.
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Table I. Robots description and their physical parameters.

Mass (kg) Length (m)
Robots Inertia (kgmz) C. mass (m)
Robot 2DoF Robot 2DoF
mp; =03 1 =0.135
my = 0.2 l» =0.135
Robot 3DoF Robot 3DoF
m1 = 0.25 1 =0.20
myp = 0.15 I, =0.15
m3 =0.10 I3 =0.10
17 = 0.0055 lcy =0.10
I, =0.005 lcp =0.075
I3 = 0.0025 lcz = 0.05
Robot OMNI Robot OMNI
m1 = 0.035 l1 =0.135
myp = 0.1 I, =0.135
I1x = 0.00001
Iy = 0.0002126
I1z = 0.0002126
1>, = 0.00001

17y, = 0.0006075
Iz = 0.0006075

DoF, degrees-of-freedom.

Table II. Parameters of the variable time-delays for the
expression 7;; = p + aysin(P1t) + azsin(dat).

Delay o ai P (rad/s) an Yo (rad/s)
T>1 0.12  0.05 7 0.06 27
T31 0.09 0.03 2 0.05 14
T1> 0.14 0.03 5 0.08 23
T3> 0.14  0.06 2 0.08 13
T13 0.11 0.04 3 0.07 27
T>3 0.08 0.03 8 0.05 18
Ty3 0.13  0.05 4 0.07 29
T34 0.11  0.05 6 0.06 30
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=Pz —=Ps1—Ps,2=Pr3—DPz 4
0.1
E
-0.1 1 1 1 1 1
04y [=Ps i —Pyi—Py2—Dy5—Di]
— 0.2
£
0
1 Il | 1 1 1
023} —_——
— 0b [==P—Pz1—Pz2—P=3—D-4]
£
-0.2 -
04 1 1 1 1 1 1 1 |
0 5 10 15 20 25 30 35 40
Time [s]

Figure 2. Robots position (leader—follower).

—=T] —T]1 — T2 —1]3 —T]1

05 L I I I I 1 1 ]
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7’ =00 — P21 — P22 =Pz —Da]

- 1 1 1 1 1 1 I

05 B 1z 1z
|-»‘3‘s,/ — P31 —Bs2—0s3 —3‘73.4|
0

05 1 I I I 1 1 1 ]
0 5 10 15 20 25 30 35 40

Time [s]

Figure 3. Robots orientation, represented by unit-quaternions (leader—follower).

4.1. Leader-follower case

The controller gains employed in this simulation are K; = 30, K, = 25, K3 = 30, K4 = 50,
I'p; = 80Iy,and I' g; = 501, fori € {1,2, 3, 4}. For this case, only node 2 receives the leader con-
stant pose x; = [0,0.2202,0.1471,0.5879, —0.3928, 0.3928, 0.5879]T, the interconnection weights
a; are settoap; = 1 and a; = 0 fori € {1, 3, 4}. The follower interconnection weights are the fol-
lowing: wip = w1 = 1.5, w13 = w31 = 0.8, wy3 = w3y = 0.7, and wig4 = wy3 = 0.8. These
weights fulfill (26) using «1=0.217, 0»=0.259, a3=0.279, and «4=0.990. Figures 2 and 3 show the
position and the orientation dynamic behavior for the leader—follower control algorithm. It can be
appreciated that the motion of the 2DoF and 3DoF robots only takes place in the plane defined by
the coordinates z and y, while that of the OMNI robots is in the 3D space and needs three coordi-
nates. Furthermore, it is observed that despite the time-delays and the differences in the robots initial
conditions, the robots asymptotically converge to the leader pose. Figure 4 depicts the kinematic
parameter adaptation for each robot manipulator.

4.2. Leaderless case

The leaderless controller gains are K; = 30, K, = 50, K3 = 30, K4 = 50, I'p; = 80Io,
and I'g; = 5014 fori € {1,2,3,4}. In the leaderless consensus, a; = 0 for all i € {1,2,3,4}.
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Figure 4. Kinematic parameters adaptation (leader—follower).
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Figure 5. Robots position (leaderless).
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Figure 6. Robots orientation, represented by unit-quaternions (leaderless).
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Figure 7. Kinematic parameters adaptation (leaderless).
The interconnection weights are wi, = wy; = 1, w3 = w3; = 0.8, w3 = w3, = 0.5, and

w34 = w3z = 1.2. These weights satisfy condition (26) with oy = 0.30, a» = 0.33, a3 = 0.25, and
a4 = 0.43. The robot network pose behavior is shown in Figure 5, for the position, and in Figure 6,
for the orientation. It can be observed that the network asymptotically reaches a consensus pose.
The kinematic estimated parameters are shown in Figure 7.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel adaptive controller that is capable of solving the leader—follower and
the leaderless consensus problems in networks of heterogeneous robot manipulators in the task
space. For the leader—follower case, it is only required that the leader pose be available to, at
least, one follower. Moreover, the controller is robust to parameter uncertainty and to interconnec-
tion variable time-delays. Furthermore, the orientation of the robot end-effectors is represented by
singularity-free unit-quaternions. A simple, yet useful, modification of the controller allows to deal
with a dynamic leader and with additional subtask control objectives, like collisions and singular-
ities avoidance. Simulations, using a network with four manipulators, are shown to illustrate the
performance of the proposed scheme.

At present, we are working towards the solution of the leader—follower and the leaderless consen-
sus problems for general directed graphs. Future research includes the extension of this work to the
case when the interconnection graph is time-varying.

Similar to previous works, for example, [48, 49], the kinematic adaptation law (20) requires linear
and angular velocity measurements. One possible solution to this issue is the incorporation of a
velocity observer. This is another current research avenue.
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