12 research outputs found

    Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

    Get PDF
    A simple and straightforward synthetic approach for carbon nanodots (C-dots) is proposed. The strategy is based on a one-step hydrothermal chemical reduction with thiourea and urea, leading to high quantum yield C-dots. The obtained C-dots are well-dispersed with a uniform size and a graphite-like structure. A synergistic reduction mechanism was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The findings show that using both thiourea and urea during the one-pot synthesis enhances the luminescence of the generated C-dots. Moreover, the prepared C-dots have a high distribution of functional groups on their surface. In this work, C-dots proved to be a suitable nanomaterial for imaging of bacteria and exhibit potential for application in bioimaging thanks to their low cytotoxicity

    Recognition of FT-IR Data Cuscutae Semen, Japanese Dodder, and Sinapis Semen Using Discrete Wavelet Transformation and RBF Networks

    Get PDF
    Horizontal attenuation total reflection Fourier transformation infrared spectroscopy (HATR-FT-IR) studies on cuscutae semen and its confusable varieties Japanese dodder and sinapis semen combined with discrete wavelet transformation (DWT) and radial basis function (RBF) neural networks have been conducted in order to classify them. DWT is used to decompose the FT-IRs of cuscutae semen, Japanese dodder, and sinapis semen. Two main scales are selected as the feature extracting space in the DWT domain. According to the distribution of cuscutae semen, Japanese dodder, and sinapis semen’s FT-IRs, three feature regions are determined at detail 3, and two feature regions are determined at detail 4 by selecting two scales in the DWT domain. Thus five feature parameters form the feature vector. The feature vector is input to the RBF neural networks to train so as to accurately classify the cuscutae semen, Japanese dodder, and sinapis semen. 120 sets of FT-IR data are used to train and test the proposed method, where 60 sets of data are used to train samples, and another 60 sets of FT-IR data are used to test samples. Experimental results show that the accurate recognition rate of cuscutae semen, Japanese dodder, and sinapis semen is average of 100.00%, 98.33%, and 100.00%, respectively, following the proposed method

    Voltammetric Determination of 5-Hydroxymethyl-2-furfural in Processed Cheese Using an Easy-Made and Economic Integrated 3D Graphene-like Electrode

    No full text
    The concentration of 5-hydroxymethyl-2-furfural (HMF) is an important quality-related index in milk and milk products. Fast, cost-effective and environmentally friendly determination of HMF is of great significance in milk products control. In this study, a three-dimensional (3D) graphene-like surface (3DGrls) was successfully prepared within 5 min by an electrochemical amperometric pretreatment on a pencil graphite electrode (PGE). The fast-obtained 3D graphene-like surface increased the electrode surface area and enhanced the electron transfer capability without the addition of any harmful chemicals. The morphology and chemical composition of the obtained electrode were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The results found that the electrochemical response to HMF at the prepared 3DGrls/PGE was 34 times higher than that at PGE. The modified electrode showed a good linear response to HMF in a concentration range of 0.35~116 μM with a low limit of detection (LOD) of 0.099 μM. The integrated electrode also exhibited excellent stability and wonderful antifouling property. Furthermore, the 3DGrls/PGE was successfully applied for the determination of HMF in three processed cheese samples with satisfactory results

    Flower-like platinum-cobalt-ruthenium alloy nanoassemblies as robust and highly efficient electrocatalyst for hydrogen evolution reaction

    No full text
    Exploring hydrogen evolution reaction (HER) catalyst with highly catalytic features in alkaline conditions is considered as significance for water splitting. In this study, a general and simple method was developed to prepare flower-like platinum-cobalt-ruthenium alloy nanoassemblies (PtCoRu NAs) by using murexide and cetyltrimethylammonium chloride (CTAC) as the co-structure-directing agents. Benefiting from the structural advantages and multimetallic compositions, the as-prepared PtCoRu NAs displayed remarkably enhanced electrocatalytic performance for the HER in 1.0 M KOH, with a low overpotential (eta, 22 mV) to drive 10 mA cm(-2), small Tafel slope (46 mV dec(-1)), and high exchange current density (j(0), 3.30 mA cm(-2)) during the long-term electrolysis. The as-developed strategy sheds some valuable guidelines for preparing advanced multimetallic catalysts for production of hydrogen in fuel cells. (C) 2019 Elsevier Inc. All rights reserved
    corecore