321 research outputs found

    Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population

    Get PDF
    Increasing evidence suggests that fibroblast growth factors (FGFs) are neurotrophic in GnRH neurons. However, the extent to which FGFs are involved in establishing a functional GnRH system in the whole organism has not been investigated. In this study, transgenic mice with the expression of a dominant-negative FGF receptor mutant (FGFRm) targeted to GnRH neurons were generated to examine the consequence of disrupted FGF signaling on the formation of the GnRH system. To first test the effectiveness of this strategy, GT1 cells, a GnRH neuronal cell line, were stably transfected with FGFRm. The transfected cells showed attenuated neurite outgrowth, diminished FGF-2 responsiveness in a cell survival assay, and blunted activation of the signaling pathway in response to FGF-2. Transgenic mice expressing FGFRm in a GnRH neuron-specific manner exhibited a 30% reduction in GnRH neuron number, but the anatomical distribution of GnRH neurons was unaltered. Although these mice were initially fertile, they displayed several reproductive defects, including delayed puberty, reduced litter size, and early reproductive senescence. Overall, our results are the first to show, at the level of the organism, that FGFs are one of the important components involved in the formation and maintenance of the GnRH system

    The Clustering and Halo Masses of Star Forming Galaxies at z<1

    Full text link
    We present clustering measurements and halo masses of star forming galaxies at 0.2 < z < 1.0. After excluding AGN, we construct a sample of 22553 24 {\mu}m sources selected from 8.42 deg^2 of the Spitzer MIPS AGN and Galaxy Evolution Survey of Bo\"otes. Mid-infrared imaging allows us to observe galaxies with the highest star formation rates (SFRs), less biased by dust obscuration afflicting the optical bands. We find that the galaxies with the highest SFRs have optical colors which are redder than typical blue cloud galaxies, with many residing within the green valley. At z > 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L_TIR > 10^11 Lsun) and is comprised entirely of LIRGs and ultra-luminous infrared galaxies (ULIRGs, L_TIR > 10^12 Lsun) at z > 0.6. We observe weak clustering of r_0 = 3-6 Mpc/h for almost all of our star forming samples. We find that the clustering and halo mass depend on L_TIR at all redshifts, where galaxies with higher L_TIR (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M_halo ~ 10^12.9 Msun/h. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star forming galaxy samples to their local descendants. Most star forming galaxies at z < 1.0 are the progenitors of L < 2.5L* blue galaxies in the local universe, but star forming galaxies with the highest SFRs (L_TIR >10^11.7 Lsun) at 0.6<z<1.0 are the progenitors of early-type galaxies in denser group environments.Comment: 18 pages, 16 figures, 2 tables. Accepted for publication in the Astrophysical Journa

    A complete census of Herschel-detected infrared sources within the HST Frontier Fields

    Get PDF
    We present a complete census of all Herschel-detected sources within the six massive lensing clusters of the HST Frontier Fields (HFF). We provide a robust legacy catalogue of 263 sources with Herschel fluxes, primarily based on imaging from the Herschel Lensing Survey and PEP/HerMES Key Programmes. We optimally combine Herschel, Spitzer and WISE infrared (IR) photometry with data from HST, VLA and ground-based observatories, identifying counterparts to gain source redshifts. For each Herschel-detected source we also present magnification factor (μ), intrinsic IR luminosity and characteristic dust temperature, providing a comprehensive view of dust-obscured star formation within the HFF. We demonstrate the utility of our catalogues through an exploratory overview of the magnified population, including more than 20 background sub-LIRGs unreachable by Herschel without the assistance gravitational lensing

    Have we seen the geneticisation of society? Expectations and evidence

    Get PDF
    Abby Lippman’s geneticization thesis, of the early 1990s, argued and anticipated that with the rise of genetics, increasing areas of social and health related activities would come to be understood and defined in genetic terms leading to major changes in society, medicine and health care. We review the considerable literature on geneticization and consider how the concept stands both theoretically and empirically across scientific, clinical, popular and lay discourse and practice. Social science scholarship indicates that relatively little of the original claim of the geneticization thesis has been realised, highlighting the development of more complex and dynamic accounts of disease in scientific discourse and the complexity of relationships between bioscientific, clinical and lay understandings. This scholarship represents a shift in social science understandings of the processes of sociotechnical change, which have moved from rather simplistic linear models to an appreciation of disease categories as multiply understood. Despite these shifts, we argue that a genetic imaginary persists, which plays a performative role in driving investments in new gene-based developments. Understanding the enduring power of this genetic imaginary and its consequences remains a key task for the social sciences, one which treats ongoing genetic expectations and predictions in a sceptical yet open way

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

    Get PDF
    Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to ~50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars’ light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images’ long-term brightness ratio
    corecore