18 research outputs found

    Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae

    Get PDF
    In humans, nasopharyngeal carriage of Streptococcus pneumoniae is common and although primarily asymptomatic, is a pre-requisite for pneumonia and invasive pneumococcal disease (IPD). Together, these kill over 500,000 people over the age of 70 years worldwide every year. Pneumococcal conjugate vaccines have been largely successful in reducing IPD in young children and have had considerable indirect impact in protection of older people in industrialized country settings (herd immunity). However, serotype replacement continues to threaten vulnerable populations, particularly older people in whom direct vaccine efficacy is reduced. The early control of pneumococcal colonization at the mucosal surface is mediated through a complex array of epithelial and innate immune cell interactions. Older people often display a state of chronic inflammation, which is associated with an increased mortality risk and has been termed ‘Inflammageing’. In this review, we discuss the contribution of an altered microbiome, the impact of inflammageing on human epithelial and innate immunity to S. pneumoniae, and how the resulting dysregulation may affect the outcome of pneumococcal infection in older individuals. We describe the impact of the pneumococcal vaccine and highlight potential research approaches which may improve our understanding of respiratory mucosal immunity during pneumococcal colonization in older individuals

    Complete Genome Sequence of Streptococcus pneumoniae Strain BVJ1JL, a Serotype 1 Carriage Isolate from Malawi.

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and bacteremia. Serotype 1 is rarely carried but is commonly associated with invasive pneumococcal disease, and in the African "meningitis belt," it is prone to cause cyclical epidemics. We report the complete genome sequence of S. pneumoniae serotype 1 strain BVJ1JL, isolated in Malawi

    Elucidating pathways of Toxoplasma gondii invasion in the gastrointestinal tract: involvement of the tight junction protein occludin

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite infecting one third of the world’s population. The small intestine is the parasite’s primary route of infection, although the pathway of epithelium transmigration remains unclear. Using an in vitro invasion assay and live imaging we showed that T. gondii (RH) tachyzoites infect and transmigrate between adjacent intestinal epithelial cells in polarized monolayers without altering barrier integrity, despite eliciting the production of specific inflammatory mediators and chemokines. During invasion, T. gondii co-localized with occludin. Reducing the levels of endogenous cellular occludin with specific small interfering RNAs significantly reduced the ability of T. gondii to penetrate between and infect epithelial cells. Furthermore, an in vitro invasion and binding assays using recombinant occludin fragments established the capacity of the parasite to bind occludin and in particular to the extracellular loops of the protein. These findings provide evidence for occludin playing a role in the invasion of T. gondii in small intestinal epithelial cells

    The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi

    Get PDF
    Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into “Metabolic genotypes” (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR

    The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi.

    Get PDF
    Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into "Metabolic genotypes" (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR

    Nutrition, mental health and violence: from pregnancy to postpartum Cohort of women attending primary care units in Southern Brazil - ECCAGE study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Woman's nutritional status, before and during pregnancy, is a strong determinant of health outcomes in the mother and newborn. Gestational weight gain and postpartum weight retention increases risk of overweight or obesity in the future and they depend on the pregestational nutritional status and on food consumption and eating behavior during pregnancy. Eating behavior during pregnancy may be the cause or consequence of mood changes during pregnancy, especially depression, which increases likelihood of postpartum depression. In Brazil, a study carried out in the immediate postpartum period found that one in three women experienced some type of violence during pregnancy. Violence and depression are strongly associated and both exposures during pregnancy are associated with increased maternal stress and subsequent harm to the infant. The main objectives of this study are: to identify food intake and eating behaviors patterns; to estimate the prevalence of common mental disorders and the experience of violence during and after pregnancy; and to estimate the association between these exposures and infant's health and development.</p> <p>Methods/Design</p> <p>This is a cohort study of 780 pregnant women receiving care in 18 primary care units in two cities in Southern Brazil. Pregnant women were first evaluated between the 16<sup>th </sup>and 36<sup>th </sup>week of pregnancy at a prenatal visit. Follow-up included immediate postpartum assessment and around the fifth month postpartum. Information was obtained on sociodemographic characteristics, living circumstances, food intake, eating behaviors, mental health and exposure to violence, and on infant's development and anthropometrics measurements.</p> <p>Discussion</p> <p>This project will bring relevant information for a better understanding of the relationship between exposures during pregnancy and how they might affect child development, which can be useful for a better planning of health actions aiming to enhance available resources in primary health care.</p

    The protozoan pathogen Toxoplasma gondii targets the paracellular pathway to invade the intestinal epithelium

    No full text
    Abstract  Toxoplasma gondii is a ubiquitous parasite found within all mammals and birds worldwide that can cause fatal infections in immunocompromised persons and fetuses. The parasite causes chronic infections by residing in long-living tissues of the muscle and brain. T. gondii infects the host through contaminated meat and water consumption with the gastrointestinal tract (GI tract) being the first point of contact with the host. The mechanisms by which the parasite invades the host through the GI tract are unknown, although it has been suggested that the paracellular pathway is important for parasite dissemination. Studies indicate that epithelial tight junction-associated proteins are affected by T. gondii, although which junctional proteins are affected and the nature of host protein-parasite interactions have not been established. We have uncovered evidence that T. gondii influences the cellular distribution of occludin to transmigrate the intestinal epithelium and suggest how candidate binding partners can be identified

    Pneumolysin suppresses the initial macrophage pro-inflammatory response to Streptococcus pneumoniae infection

    No full text
    Background: Published data for the Streptococcus pneumoniae virulence factor Pneumolysin (Ply) show contradictory effects on the host inflammatory response to infection. Ply has been shown to activate the inflammasome, but also can bind to MRC-1 resulting in suppression of dendritic cell inflammatory responses. Methods: We have used an in vitro infection model of human monocyte derived macrophages (MDM), and a mouse model of pneumonia to clarify whether pro- or anti-inflammatory effects dominate the effects of Ply on the initial macrophage inflammatory response to S. pneumoniae, and the consequences during early lung infection. Results: We found that infection with S. pneumoniae expressing Ply suppressed TNF and IL6 production by MDMs compared to cells infected with ply-deficient S. pneumoniae. This effect was independent of bacterial effects on cell death. Transcriptional analysis demonstrated S. pneumoniae expressing Ply caused a qualitatively similar but quantitatively lower MDM transcriptional response to S. pneumoniae compared to ply-deficient S. pneumoniae, with reduced expression of TNF and type I IFN inducible genes. Reduction of the MDM inflammatory response was prevented by inhibition of SOCS1. In the early lung infection mouse model, the TNF response to ply-deficient S. pneumoniae was enhanced and bacterial clearance increased compared to infection with wild type S. pneumoniae. Conclusion: Overall, these data show Ply inhibits the initial macrophage inflammatory response to S. pneumoniae, probably mediated through SOCS1, and this was associated with improved immune evasion during early lung infection

    The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi

    No full text
    Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into “Metabolic genotypes” (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR
    corecore