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Abstract 23 

Toxoplasma gondii is an obligate intracellular parasite infecting one third of the world’s 24 

population. The small intestine is the parasite’s primary route of infection, although the 25 

pathway of epithelium transmigration remains unclear. Using an in vitro invasion assay and 26 

live imaging we showed that T. gondii (RH) tachyzoites infect and transmigrate between 27 

adjacent intestinal epithelial cells in polarized monolayers without altering barrier integrity, 28 

despite eliciting the production of specific inflammatory mediators and chemokines. During 29 

invasion, T. gondii co-localized with occludin. Reducing the levels of endogenous cellular 30 

occludin with specific small interfering RNAs significantly reduced the ability of T. gondii to 31 

penetrate between and infect epithelial cells. Furthermore, an in vitro invasion and binding 32 

assays using recombinant occludin fragments established the capacity of the parasite to bind 33 

occludin and in particular to the extracellular loops of the protein. These findings provide 34 

evidence for occludin playing a role in the invasion of T. gondii in small intestinal epithelial 35 

cells.    36 

 37 

 38 
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 40 
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1. Introduction 41 

The ability of Toxoplasma gondii to infect almost any warm blooded animal and virtually any 42 

nucleated cell makes it the most prevalent parasitic infection worldwide. It is estimated that up to 43 

one third the world’s human population is infected, although prevalence varies between countries 44 

[1, 2]. In the United States, it is estimated that approximately 22% of the population 12 years and 45 

older have been infected with T. gondii whereas in certain South American countries, the 46 

frequency of seropositive individuals is as high as 75% [3]. With the exception of the 47 

immunocompromised and pregnant women, T. gondii causes a relatively asymptomatic infection 48 

of typical fever-like symptoms. The majority of infections occur following the consumption of 49 

contaminated, undercooked meat, unwashed vegetables and contaminated water supplies [4, 5]. 50 

The gastrointestinal tract is therefore a major route of T. gondii infection in most cases [6, 7].  51 

Tachyzoites are the life form of T. gondii that disseminate out of the gut and migrate through the 52 

body and infect the brain and muscles, where they convert to bradyzoites that form dormant, long 53 

lived and non-immunogenic cysts [8]. How the parasite transmigrates intestinal epithelial cells is 54 

unclear, although there is evidence that the paracellular pathway is important for parasite 55 

dissemination [9].  56 

 57 

The small intestinal epithelial barrier consists of a single layer of intestinal epithelial cells (IECs) 58 

that separate the luminal contents from the underlying mucosa. These cells express apico-lateral 59 

junctional proteins, the most apical of which is the tight junction (TJ). TJs provide a barrier for 60 

the regulated passage of ions, uncharged molecules and macromolecules. They consist of a 61 

complex of over 100 proteins, the interactions of which determine barrier function. Prominent TJ 62 

proteins include the claudin family members that control permeability, junctional adhesion 63 

molecules that govern cell polarity and migration, and the MARVEL proteins such as occludin, 64 

which regulates permeability to macromolecules, while a variety of other integral membrane 65 

proteins, peripheral membrane proteins and signaling proteins such as Zonula occludens-1 (ZO-66 
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1) make up the remaining TJ complex [10-12]. TJs are dynamic in nature and often consist of 67 

mobile pools within the membrane and cytoplasm that are involved in recycling and turnover of 68 

the protein. In the case of occludin this mobility is associated with changes in phosphorylation 69 

status [13, 14].  70 

 71 

TJs are targeted by pathogens as a mechanism of host invasion. For example, the enteric 72 

pathogens Vibrio cholera and Clostridium perfringes secrete proteases and enterotoxins, 73 

respectively, that degrade occludin and claudins [15].  A paracellular route of entry between cells 74 

via intercellular adhesion molecule 1 (ICAM-1) by T. gondii has been reported [9] and we have 75 

previously shown that T. gondii bradyzoites and cysts affect the cellular distribution of occludin 76 

in barrier epithelial cells both in vitro and in vivo [16, 17]. 77 

 78 

Using epithelial cells derived from within the crypts of Lieberkühn of the murine small intestinal 79 

epithelium, we investigated the pathways by which T. gondii invades (defined as infection into 80 

cells and transmigration between cells via the paracellular pathway) the intestinal epithelium.  81 
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2. Materials and Methods 82 

2.1 Cells.   83 

The rodent small IEC lines m-IC
cl2

 and IEC-6 were maintained as previously described [18, 19]. 84 

To reduce occludin expression, m-ICc12 cells were cultured either on 13mm coverslips (for H&E 85 

staining), in 6 well plates (for immunoblotting), or on transwell cell culture inserts (for 86 

transmigration assays). In each case 0.38µg of occludin-specific siRNA (a mixture of three 19 - 87 

25 nucleotides, Santa Cruz) in transfection media (OptiMEM, Invitrogen) was added to the cell 88 

cultures for 6 h at 37
o
C, washed and then incubated for a further 24 h in normal growth media. As 89 

a control, m-ICc12 cells were incubated with scrambled (non-silencing, scRNA) siRNAs (Santa 90 

Cruz). Occludin knockdown was assessed by immunoblotting and immunocytochemistry. Bead 91 

arrays (30 Plex Bead Mixture, BD Biosciences) were used to quantify cytokines and chemokines 92 

in cell supernatants, according to the manufacturers’ instructions and analyzed using a Cytomics 93 

FC500 MPL (Beckman Coulter). 94 

 95 

2.2 Parasites.  96 

The type 1 RH strain of T. gondii tachyzoites stably expressing YFP [20] were maintained by 97 

continuous passage in confluent monolayers of Hs27 Human Fetal Foreskin Fibroblasts 98 

(European Collection of Cell Cultures) in DMEM supplemented with 2 mmol/L L-Glutamine and 99 

10% FBS at 37C in 5% CO2. Pelleted parasites were collected after 90% HFF lysis by 100 

centrifugation at 1000g for 15 min.  101 

 102 

2.3 Transmigration and Infection assays.  103 

m-ICcl2 cells were plated onto the apical compartment of polyethylene terephthalate (PET) cell 104 
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culture transwell inserts (8µm pore size, BD Biosciences) within a 24 well plate. TEER was 105 

measured using an Epithelial Tissue Volt Ohmmeter 2 (World Precision Instruments). By day 13, 106 

inserts contained confluent, polarized monolayers of cells. Barrier permeability was assessed by 107 

periodic TEER measurements and flux of FITC-conjugated dextran (3 - 5kDa; Sigma-Aldrich) 108 

across the transwell membrane; 1mg/ml FITC-dextran was added to the apical compartment and 109 

media from the basal compartment was analyzed for FITC content using a FLUOstar OPTIMA 110 

microplate reader (BMG Labtech). FITC-dextran quantification was determined from a standard 111 

curve generated using standards of known concentration. Transmigrating parasites were 112 

identified from the basal compartment by centrifugation and analyzing by flow cytometry using a 113 

Cytomics FC500 MPL. Data was analyzed post-collection using FlowJo version 7.6 (TreeStar).  114 

 115 

2.4 Immunocytochemistry.  116 

m-ICc12 cells were fixed in either 2% formaldehyde (to visualize the parasites) or acetone (to 117 

visualize the TJ proteins), permeabilized with 0.2% Triton X-100 and incubated with blocking 118 

buffer (0.2% Triton X-100, 3% BSA, 3% goat serum, 3% fish skin gelatin in PBS) prior to 119 

incubation with primary antibodies including occludin, claudin-2 (Invitrogen), ZO-1 (Santa Cruz) 120 

and β-catenin (BD Biosciences). Controls consisted of either no primary antibody or isotype 121 

matched antibodies of irrelevant specificity. A 1:1 mixture of Rhodamine-peanut and -wheat 122 

germ agglutinin (Vector Labs) was used to visualize the apical membrane.  For transwell cultures, 123 

the PET membrane was extracted from the insert and placed cell side up onto a glass microscope 124 

slide with DePeX (BDH) and covered with a glass coverslip. To visualize intracellular parasites, 125 

m-ICc12 cells grown on 13mm diameter glass coverslips (BDH), fixed (2% formaldehyde), 126 

permeabilized and H&E counterstained before mounting and viewing using an upright or 127 

inverted LSM510 META on a Zeiss AxioVert 200M microscope. Images were analyzed on LSM 128 

software or AxioVision image viewer. Z stacks were composed of 1µm interval sections with the 129 
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40× objective unless stated otherwise. To visualize occludin by Z stack, cells were marked for the 130 

apical and basal membrane using surface carbohydrates and β-catenin respectively. This provided 131 

a distinction between cell domains where tight junction proteins are expressed. Throughout 132 

experiments, polarized cells were of similar depth and therefore their plane of imaging was 133 

consistent as possible. In addition, these markers provided a boundary between the membrane 134 

and cytoplasm of each cell.  Image quantification was carried out using the Integrated Density 135 

tool from Image J1.47V.   136 

 137 

2.5 Electron Microscopy.  138 

IECs were plated onto collagen gel-coated Thermanox coverslips in 35mm dishes (Ibidi) and 139 

cultured for 8 days prior to incubation with RH-YFP T. gondii tachyzoites for 2 h. Media was 140 

removed and cells rinsed in PBS before fixing with 3% glutaraldehye (Agar Scientific) in 0.1M 141 

cacodylate buffer (pH 7.2) for 2 h. Further details of sample preparation can be found in the 142 

supplementary information. Samples were visualized using a Zeiss Supra 55 VP FEG SEM, 143 

operating at 3kV (Zeiss).  144 

 145 

2.6 Two-photon-microscope live imaging.  146 

IEC-6 were plated onto 35mm μ-dishes (Ibidi) coated with Matrigel® (Corning) and cultured for 147 

four days. Cells were labeled by staining with CellTracker™ Red CMPTX (Invitrogen) prior to 148 

apical addition of RH-YFP T. gondii tachyzoites immediately before imaging. Images were 149 

acquired using a LaVision BioTec TriM Scope II 2-photon microscope (Bielefeld) based on a 150 

Nikon Eclipse Ti optical inverted microscope with a Nikon 40x water immersion (Apo LWD λS 151 

NA 1.15) objective (Nikon UK Ltd) and a temperature control system (Life Imaging Services). 152 
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Multi photon excitation was provided by a Coherent Chameleon Sapphire laser (Coherent Inc.) at 153 

1060nm to simultaneously excite CellTracker™ Red and RH-YFP T. gondii. Typical image 154 

volumes were 100 x 100 x 27μm and Z-stacks were separated by 1μm. Time resolved data were 155 

acquired by continuous measuring of Z-stacks for up to 30 min. The frame rate was 51.2 sec with 156 

these parameters. Images were analysed with the Fiji/ImageJ package. 157 

 158 

2.7 Immunoblotting.  159 

m-ICc12 cells were lysed in ice-cold lysis buffer (1% Triton X-100, 100 mmol/L NaCl, 25 160 

mmol/L Tris-HCl, pH 7.4, 1 mmol/L sodium orthovanadate, 5 mmol/L EDTA, 2 mmol/L EGTA, 161 

50 mmol/L phenylmethysulfonyl fluoride (PMSF), 25 mM sodium fluoride, 10× protease 162 

inhibitor cocktail and 15× phosphatase inhibitor cocktail (Sigma-Aldrich)) by repeatedly passing 163 

through a 19 gauge needle before centrifuging at 16,100g for 10 min at 4
o
C. Protein 164 

quantification was determined using the DC Protein Assay Kit (BioRad Labs). To provide 165 

additional verification of equal loading across lanes, densitometry analysis was performed on 166 

coomassie-stained gels by scanning and imaging gels using Quantity One software (version 167 

4.6.1). For immunoblotting, samples were transferred onto Hybond C+ nitrocellulose membranes 168 

(Amersham Biosciences), blocked in 5% BSA in TTBS (150 mM NaCl, 20 mM Tris Base, 0.1% 169 

Tween-20, pH 7.4) and incubated in 1% BSA in TTBS buffer with primary antibodies for 24 h at 170 

4
o
C and secondary HRP conjugates (Santa Cruz) for 1 h at 25

o
C. Membranes were imaged using 171 

the enhanced SuperSignal West Pico Chemiluminescent substrate (Pierce Chemical Company) 172 

and visualized with a Fluor-S-Multi Imager (Bio-Rad) and Quantity One software (version 4.5.2). 173 

 174 

2.8 Recombinant occludin peptides.  175 

DNA regions coding for extracellular loop (ECL) 1 (residues 85 to 138) (184bp) ECL2 (residues 176 
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191 to 241) (167bp), ECL1+ECL2 (residues 85 to 241) (485bp) and C-terminus (residues 261 to 177 

521) (800bp) murine occludin fragments were PCR amplified from pBABE-FLAG+Occ plasmid 178 

DNA (Britta Engelhardt, University of Bern, Switzerland) [21] using the following primer pairs: 179 

ECL1-F, ATGCCATATGACACTTGCTTGGGACAG-3’ and ECL1-R, 5’- 180 

AGCAGCCGGATCCTAGCCTTTGGCTGCTCTTGGGT-3’ (full length ECL1); ECL2-F, 5’-181 

ATGCCATATGATAATGGGAGTGAACCC-3’ and ECL2-R, 5’-182 

ATGGATCCTACTGGGGATCAACCACAC-3’ (full length ECL2); ECL1-F, 5’-183 

ATGCCATATGACACTTGCTTGGGACAG-3’ and ECL2-R, 5’- 184 

ATGGATCCTACTGGGGATCAACCACAC-3’ (full length ECL1+ECL2); and C’-F, 5’- 185 

ATGCCATATGGCTGTGAAAACCCGAAG-3’ and C’-R, 5’- 186 

ATGGATCCTAAGGTTTCCGTCTG-3’ (full length C-terminus). PCR products were cloned 187 

into the NdeI and BamHI sites of the expression vector pET15b (Novagen) and sequence-verified 188 

prior to transforming E. coli Rosetta2 (DE3) pLysS. E. coli expressing His-tagged-protein 189 

products were purified using the Ni-NTA purification system (Qiagen) under denaturing 190 

conditions according to the manufacturer’s instructions. Eluted proteins were immediately re-191 

natured through the removal of urea by sequential dialysis. The purity of the recombinant 192 

occludin peptides was determined by SDS-PAGE.  193 

 194 

3.0 Occludin-parasite binding assays.  195 

IEC-6 cells were plated onto 13mm diameter glass coverslips (BDH) and cultured for 4 days 196 

prior to apical addition of either RH-YFP T. gondii tachyzoites (control) or RH-YFP T. gondii 197 

tachyzoites pre-incubated with 2μM recombinant occludin peptides for 15 minutes, for 2 h. 198 

To visualize intracellular parasites, IEC-6 cells were permeabilized and H&E counterstained 199 

before mounting and imaging of parasitophorous vacuoles using an inverted Zeiss AxioVert 200 

200M microscope. Images were analyzed on AxioVision image viewer with 6-12 fields of view 201 
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recorded for each slide. 202 

 203 

For peptide-parasite binding assays His-tagged occludin peptides or a His-tagged mCherry 204 

protein (20 µM in 6 M urea in buffer I (PBS with 1 mM CaCl and 0.05% Tween-20)) were 205 

immobilised onto Schott Nexterion H slides (Jena, Germany) of a 16-well superstructure in a 206 

humidified chamber for 2 h at 20
o
C. Wells were washed in decreasing concentrations of urea (4 – 207 

0 M) in buffer I then blocking solution for 1 h (25 mM ethanolamine in 100 mM sodium borate 208 

buffer). The wells were then washed in buffer I and incubated with YFP T. gondii tachyzoites 209 

(10
6
 per well) for 2 h at 20

o
C. Slides were fixed with 2% formaldehyde prior to mounting and 210 

bound parasites were visualized by UV microscopy (Zeiss AxioVert 200M microscope and 211 

AxioVision image viewer). Parasites were counted using fluorescent pixel counts at 63x 212 

magnification (Adobe Photoshop CS6) with 6-12 fields of view recorded for each well. 213 

 214 

3.1 Statistical Analysis.  215 

All data was assessed for normal distribution using the Kolmogarov-Smirnoff test and for 216 

homogeneity of variance by the Bartlett’s test. For parametric data, an independent t test, or a 217 

one-way ANOVA was carried out. For non-parametric data the Mann-Whitney U test and the 218 

Kruskal-Wallis test was used. Post-Hoc analyzes were carried out with Tukey’s Multiple 219 

Comparison Test or Dunn’s and Dunnett’s Multiple Comparison tests. Data was analyzed using 220 

Prism GraphPad software. P values of less than 0.05 were considered significant. 
*
P<0.05, 221 

**
P<0.01, 

***
P<0.001, ****P<0.0001. Any data points that were two or more standard deviations 222 

away from the mean were considered outliers and disregarded from analyzes. Error bars represent 223 

(±SEM) unless stated otherwise.  224 
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3. Results 225 

3.1 Experimental approach.  226 

We used a cell culture model of the mammalian intestinal epithelium to investigate how T. gondii 227 

interacts with and can breach the intestinal barrier. Virulent type 1 strain RH, T. gondii 228 

tachyzoites-YFP [20] were used in conjunction with the small intestine-derived epithelial cell 229 

lines m-IC
cl2

 [18] and IEC-6 [19] to assess barrier function, visualize and characterize parasite 230 

interactions with TJ complexes and to quantify parasite transmigration. Natural infection of T. 231 

gondii normally occurs via sporozoites or bradyzoites that invade the intestine and differentiate 232 

into tachyzoites. However, tachyzoites also contribute to the pathogenesis of acute toxoplasmosis 233 

[22, 23] and are infective via the oral route [24, 25, 16]. m-IC
cl2

 cells resemble those found along 234 

the of the small intestine, possessing hallmark features of cells of the lower crypt-villous axis 235 

with cytoplasmic accumulation of sucrose isomaltase, expression of the polymeric Ig receptor 236 

and cystic fibrosis transmembrane conductance regulator Cl
-
 channel, and the ability to produce 237 

Paneth cells [18]. IEC-6 cells possess characteristics of normal crypt epithelial cells and 238 

differentiate in culture, developing cell surface alkaline-phosphatase (ALP) enzyme activity [19, 239 

26]. 240 

 241 

3.2 T. gondii parasites cluster around cellular junctions.  242 

T. gondii tachyzoites dispersed over the apical surface of a confluent polarized monolayer of m-243 

ICc12, frequently settled around epithelial cellular junctions as seen by both immunofluorescence 244 

(Fig.1A, C and D) and electron microscopy (Fig.1B and E). The apical surface of cells is covered 245 

by microvilli and cell edges appear raised on SEM, which is highlighted in Fig.1B.  Using TEM, 246 

parasites were observed below the apical tight junction complex (TJ, Fig.1E) and between cells 247 

(large structures above and below the parasite). This distribution of parasites suggests the 248 

paracellular pathway may be a route of infection and/or transmigration, as proposed previously 249 
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[9]. Parasites were also seen in association with the cell apical membrane, indicating multiple 250 

points of cell contact and possible docking receptors.  251 

 252 

Using m-ICc12 grown on transwell inserts the number of YFP-expressing parasites transmigrating 253 

from the apical to basal compartment increased over time and up to 2 h after incubation (Fig.1F). 254 

Intracellular parasites were contained within a parasitophorous vacuole appearing as a white halo 255 

surrounding the parasite (Fig.1G). Parasite egression from infected cells was not considered an 256 

important factor within this time frame [27].  257 

 258 

To establish whether IECs responded to T. gondii in this model system, cytokine and chemokine 259 

secretion was analyzed. Among those tested, significant increases in both keratinocyte 260 

chemoattractant (KC, the murine homolog of IL-8), and monocyte chemoattractant protein-1 261 

(MCP-1) were detected in epithelial cell-conditioned media in the presence of T. gondii (Fig.1H). 262 

No changes in interferon-γ, interleukin (IL)-6, IL-10, IL-12, macrophage inflammatory protein 263 

(MIP)-1α, MIP-1β or tumor necrosis factor-α were detected (data not shown).   264 

 265 

Collectively these observations reveal the ability of T. gondii to invade cultured IECs via 266 

infection and transmigration, with a preference for cellular boundaries as a site of epithelial cell 267 

interaction and adherence. In addition, the epithelial cells responded to the parasites via the 268 

production of specific inflammatory mediators. 269 

 270 

3.3 T. gondii target cellular junctions and transmigrate through the epithelium via the 271 

paracellular pathway. 272 

The route of parasite infection and transmigration was further investigated using 2-photon 273 

microscope-based live imaging. The still images taken from the video (Video S1) and shown in 274 
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Fig.1I-K illustrate the migration of YFP-T.gondii parasites across (I-K) and then through (I

1
-K

1
) 275 

the epithelial cell monolayer. Labeling of the monolayer with CellTracker™ Red emphasized the 276 

epithelial cell junctions (X plane; I-K) and paracellular space (Z plane; I
1
-K

1
), visible as non-277 

stained regions between adjacent epithelial cells. The video highlights the rapid re-orientation and 278 

entry of the parasite into the paracellular space (Fig. 1J and J
1
 and Video S1) in a process taking 279 

less than 52 sec. The parasite then appears to transmigrate through the monolayer, leaving the 280 

paracellular space empty (Fig. 1K and K
1
 and Video S1). Paracellular egression of a parasite 281 

through the basal monolayer was also observed within minutes post-infection (data not shown). 282 

 283 

3.4 T. gondii induces changes in the distribution of the tight junction protein occludin 284 

Staining m-ICc12 cell monolayers with anti-occludin antibodies prior to and after exposure to T. 285 

gondii revealed that occludin localization changed over time in the presence of T. gondii (Fig.2). 286 

Over the time course, there was a decrease in occludin associated with the TJ complexes with 287 

staining concentrated intracellularly (Fig. 2A-E and A’-E’). This was verified by image 288 

quantification (Fig.2F and G). In detail, after 30 min, occludin appeared more concentrated at 289 

junctions compared with non-infected m-ICc12 cells (Fig.2B). After 2 h, the changes in occludin 290 

redistribution were more apparent, becoming apically enhanced within the cytoplasm (Fig. 2C’). 291 

Following 6 h of infection, the presence of occludin at the tight junction complex was fractured 292 

compared to the control, and was found increasingly in the cytoplasm (Fig.2D and D’). After 24 h 293 

this phenomenon was even more pronounced (Fig2.E and E’). We have also observed a similar 294 

pattern of occludin redistribution in m-IC
cl2

 cells in response to T. gondii (RH tachyzoite-derived) 295 

bradyzoites [17].  296 

 297 

In summary, the immunofluorescence images demonstrate the ability of T. gondii to affect 298 

changes in the distribution and partitioning of occludin between the cytoplasm, cell membrane 299 
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and TJ specific domains of m-ICc12 epithelial cells.  300 

 301 

3.5 T. gondii transmigrates between epithelial cells without affecting other junction-associated 302 

proteins or barrier function. 303 

To determine if other junctional proteins were also affected by T. gondii, m-ICc12 cells were 304 

analyzed for the expression of claudin-2, ZO-1 and β-catenin. Claudin 2 is a transmembrane 305 

protein of the tight junction complex primarily involved in the regulation of permeability. ZO-1 is 306 

a scaffold protein that connects with occludin, and β-catenin is an adherens junction protein that 307 

was chosen to compare whether multiple paracellular junctions were affected by T. gondii in our 308 

system. In comparison to the parasite-induced redistribution of occludin, the distribution of other 309 

junctional proteins was not obviously altered upon exposure to T. gondii after 2 h (Fig.3A). 310 

Staining at the junctions was still apparent and unaffected by the presence of the parasite. After 6 311 

h exposure, tight junction protein expression appeared more punctate although adherens junctions 312 

were unchanged. However, co-localization of these other proteins with T. gondii was not readily 313 

observed. Therefore these differences in expression may be attributed to indirect effects 314 

following changes in occludin distribution because, for example, ZO-1 interacts with occludin 315 

[28].  316 

 317 

To determine if transmigrating parasites affected epithelial barrier integrity, transepithelial 318 

electrical resistance (TEER) and permeability were measured. After 2 h of exposure to parasites 319 

there were no significant differences in TEER (Fig.3B) or permeability to 3 – 5kDa FITC-dextran 320 

between non-infected (media) and infected m-ICc12 monolayers (Fig.3C). Similar findings of 321 

unaltered TEER and permeability were also seen at earlier (0.5 h) and later (6 h) intervals of 322 

parasite exposure (data not shown). These findings show that T. gondii tachyzoites do not 323 

adversely affect the integrity of the intestinal epithelial barrier, in agreement with previous 324 
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studies using kidney- and trophoblast-derived cell lines [9].  325 

 326 

Immunofluorescence analysis of parasite-epithelial cell co-cultures also showed that tachyzoites 327 

co-localized with occludin which appeared to concentrate at the points of parasite entry into, or 328 

between cells (Fig.4A-E). Antibody complexes did not bind to the parasite alone (Fig.4F). After 329 

infection, occludin was localized at or in close proximity to parasites inside infected cells 330 

(Fig4.C-E and 4G-I).  331 

 332 

3.6 T. gondii infection and transmigration through epithelial cells is reduced in cells expressing 333 

lower levels of occludin.  334 

To determine if occludin was required for T. gondii infection and/or transmigration, m-ICc12 cells 335 

were treated for 48 h with occludin-specific small interfering RNA (siRNA) prior to incubating 336 

with parasites. Occludin knockdown was confirmed by immunoblotting with levels of reduction 337 

equating to ~35%, which persisted for up to 6 days post treatment (Fig.5A and data not shown). 338 

Treatment with occludin-specific siRNA had no effect on barrier function as determined via 339 

TEER measurements and permeability to 3 - 5kDa dextran (Fig.5B-C). Immunofluorescent 340 

staining of siRNA-treated cells confirmed reduced levels of occludin in cells treated with 341 

occludin-specific siRNA (Fig.5H) and showed that occludin-specific siRNA had no discernable 342 

off-target effects as evidenced by expression of other TJ proteins including claudin-2, ZO-1 and 343 

β-catenin that was unaffected by the siRNA treatment (Fig. 5I-K).  344 

 345 

To determine whether or not expression levels of occludin were important for the attachment, 346 

invasion and transmigration of T. gondii, m-ICc12 cells treated with siRNAs against occludin were 347 

incubated with parasites. As the parasitophorous vacuole in infected cells is impermeable to H&E 348 

it is possible to quantify the numbers of extracellular (adhered, Fig.5D) and intracellular parasites 349 
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(Fig.5E) using H&E stained preparations of IECs. In cells with reduced levels of occludin there 350 

was a modest but significant decrease in the number of adherent parasites (Fig.5D), which 351 

correlated with a significant decrease in the proportion of cells infected by T. gondii compared to 352 

cells treated with non-silencing siRNAs (Fig.5E). In addition, significantly fewer transmigrating 353 

parasites were detected in occludin siRNA-treated cells compared to non-silencing siRNA-treated 354 

cells (Fig.5F) despite the number of apical parasites present in each sample being equivalent 355 

(Fig.5G). 356 

 357 

Following exposure to T. gondii, residual occludin in occludin siRNA-treated cells was 358 

redistributed in a similar way to that seen in non-treated or non-silencing siRNA-treated cells 359 

(Fig.5H), suggesting that T. gondii was still able to interact with the residual occludin. By 360 

contrast, there were no changes in the distribution of other junctional proteins following infection 361 

of occludin-reduced cells (Fig.5I-K).  362 

 363 

 364 

3.7 T. gondii binds the extracellular loops of occludin. 365 

To determine T. gondii tachyzoite interactions with occludin, an in vitro infection assay was 366 

developed to assess changes in cellular attachment. As the extracellular loops (ECLs) of occludin 367 

bind to each other on adjacent cells [29, 30] we speculated that this part of the molecule is most 368 

likely to be accessible to interact with T. gondii in the paracellular space. Prior to infection of 369 

IEC-6, T. gondii tachyzoites were pre-incubated with occludin peptides (ECL2, amino acid 370 

residues 191 to 241; ECL1+ECL2, residues 85 to 241 and, as a control, C-terminus residues 261 371 

to 521, (Fig.6A-B). Extracellular, attached parasites were identified by the absence of a 372 

intracellular parasitophorous vacuoles. Pre-incubation of T. gondii pre-incubation with the 373 

ECL1+ECL2 and to a lesser extent the C-terminus peptide, significantly reduced attachment to 374 
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the epithelial cells (Fig. 7A), suggesting T. gondii tachyzoites physically interact with the 375 

ECL1+2 and C-terminus peptides, which blocks parasite attachment to IEC-6. 376 

 377 

To determine if occludin and T. gondii tachyzoites can physically interact, a solid phase in vitro 378 

binding assay was developed. YFP-parasites were incubated in individual wells of a modified 379 

microscope chamber slide to which occludin peptides (ECL1, amino acid residues 85 to 138; 380 

ECL2, amino acid residues 191 to 241; ECL1+ECL2, residues 85 to 241 and, as a control, C-381 

terminus residues 261 to 521, (Fig.6A-B) were immobilized. The images in Fig.7B show the 382 

aggregation and clustering of large numbers of parasites in wells containing the ECLl+ECL2 383 

occludin peptide. This contrasted with the low density of parasites randomly scattered across 384 

wells containing the C-terminus peptide, or in control wells containing an irrelevant protein 385 

(mCherry) or, peptide-binding media alone. Image quantification of bound parasites showed that 386 

the highest levels of bound parasites were in wells coated with the ECL1+ECL2 and ECL1 387 

peptides, suggesting that T. gondii tachyzoites can bind the extracellular loops of occludin and in 388 

particular, to ECL1 (Fig.7C).  389 

 390 

 391 

4. Discussion 392 

Here, we provide evidence of the ability of T. gondii tachyzoites to access the paracellular 393 

pathway as a means of invading and transmigrating polarized intestinal epithelial cell monolayers. 394 

We have also presented evidence indicating a physical interaction can occur, at least in vitro, 395 

between T. gondii and intestinal epithelial TJ complexes via occludin. Ingested parasites 396 

(sporozoites in oocysts and bradyzoites in tissue cysts) invade the intestine and differentiate into 397 

tachyzoites, followed by the spread of the organisms hematogenously and via lymphatics [8]. Our 398 

studies on the mechanism of epithelial cell transmigration by T. gondii tachyzoites are, we believe, 399 
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relevant to the role this stage plays in host infection and dissemination across boundary epithelial 400 

cells. Occludin may therefore be a modulator of parasite transmigration via the paracellular 401 

pathway.   402 

 403 

Many enteric pathogens have evolved mechanisms for targeting TJ-associated proteins for 404 

invasion. Alterations in the distribution or integrity of occludin are associated with infection of 405 

IECs by pathogens that cause gastroenteritis including Salmonella typhimurium [31] and 406 

enteropathogenic E. coli [32]. Whether or not other infectious life stages of T. gondii and the slow 407 

cyst-forming bradyzoite stage that is mostly associated with natural infections [33], also target the 408 

paracellular pathway, remains to be determined. Of relevance, we have shown that bradyzoites 409 

derived from the YFP-expressing RH tachyzoites used in this study also induce alterations in 410 

occludin distribution in m-IC
cl2

 epithelial cells [17]. However, in contrast to tachyzoite invasion, 411 

bradyzoites caused an increase in epithelial permeability. As bradyzoites contain different surface 412 

antigens to tachyzoites it is probable that there are multiple antigens and proteins the parasites use 413 

to infect different cells [34]. 414 

 415 

The redistribution of occludin in IECs exposed to T. gondii was seen across the epithelial cell 416 

monolayer despite only a proportion of infected cells. This dichotomy could result from direct and 417 

transient contact with parasites [35]. Alternatively, infected cells secrete cytokines and 418 

chemokines in response to pathogen exposure that may act upon neighboring cells and TJ 419 

complexes in a paracrine fashion [36-38]. 420 

 421 

The reduction of cellular occludin following siRNA treatment decreased transmigration by ~65%, 422 

but only decreased invasion by ~20%. Occludin may therefore be of more importance for the 423 

transmigration of T. gondii rather than invasion of IECs. Alternatively, changes in paracellular 424 

macromolecular flux, which is in part regulated by occludin, could also affect transmigration rates 425 
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[12, 29]. Without inhibitory occludin antibodies recognizing the extracellular domains, it was not 426 

possible to perform competition or neutralizing assays as a complimentary approach to quantify 427 

parasite transmigration between or infection into IECs. The decrease in attachment and infection 428 

following the partial reduction of occludin expression indicates that occludin may also be required 429 

for T. gondii to enter epithelial cells.  430 

 431 

The identity of parasite-derived occludin binding partners was not established here. Preliminary 432 

data from immunoprecipitation and mass spectrometry analyses reveals parasite microneme and 433 

dense granule proteins to be associated with occludin (data not shown). Given that T. gondii is 434 

capable of invading most cell types, it is perhaps surprising that only a few cell surface receptors 435 

and T. gondii ligands have so far been identified. Amongst these, T. gondii can attach via GPI-436 

anchored membrane proteins (e.g. SAG1) to host glucosamine receptors [39], and to galectin-like 437 

molecules on the cell surface [40], which assist in the formation of the microneme MIC1-MIC6 438 

protein complex that is secreted during infection [41]. MIC2 binds to ICAM-1 on the surface of 439 

IECs and this interaction is considered important for parasite transmigration [9]. Sulfated 440 

glycosaminoglycans (GAGs), heparin sulfated proteoglycans and sialic acid residues on host cells 441 

have also been shown to mediate binding and invasion of T. gondii [42-44]. These molecules 442 

represent possible adherence receptors on IECs that the parasite can manipulate before migrating 443 

to the lateral junctions.  444 

 445 

After 24 h of infection, IECs contained multiple parasites that remain co-localized with occludin. 446 

Peptides of ECL1 and ECL2 can increase the rate of occludin turnover and as T. gondii binds the 447 

extracellular loops of occludin, it is possible that endocytosis of occludin may occur following 448 

interactions with the parasite [45, 46]. This could explain why after 24 h of infection the 449 

concentration of cellular occludin was increased compared to non-infected cells. Increased rates of 450 

recycling are also thought to be a common mechanism in pathogen invasion [47]. Alternatively, 451 
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there may be increased synthesis of occludin, which was not addressed in this study. The results of 452 

our occludin binding assay suggest that T. gondii may associate with ECL1. This loop contains a 453 

high percentage of tyrosine and glycine residues that are thought to provide flexibility to the 454 

molecule, which also possesses self-associating properties [30].  455 

 456 

In summary, we have provided evidence of Toxoplasma gondii tachyzoites targeting the 457 

paracellular pathway as a means of transmigrating epithelial cell monolayers in a process that 458 

appears to involve interactions with occludin. These findings have implications for understanding 459 

how T. gondii invades its host and further highlights the susceptibility of the intestinal epithelial 460 

barrier to pathogens that target the most apical junctional complexes.      461 
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Figure Legends 593 

Figure 1: T. gondii localizes to epithelial cellular junctions before paracellular 594 

transmigration and/or infection. (A) Polarized m-ICc12 cultured on cell inserts were exposed to 595 

YFP-T. gondii for 2 h and stained for β-catenin (red). Arrows represent cells with parasites 596 

clustered around the lateral cell edge.  Images are representative of those obtained from more 597 

than ten experiments with replicates. Scale bar = 10 µm. Further evidence for lateral localization 598 

of parasites was provided by scanning electron microscopy; visualized parasites clustered around 599 

cell edges as highlighted in blue (B). Scale bar = 2 µm. Parasites were seen penetrating the 600 

epithelial cells via the paracellular pathway (white arrow) as indicated by staining with occludin 601 

(red, C), β-catenin and surface carbohydrates (red and blue respectively, D), and, by transmission 602 

electron microscopy (E). TJ, tight junction; Tg, T. gondii; A, apical surface. Scale bar = 20 µm 603 

for (C and D) and 500 nm for (E). Experiments were carried out once with biological replicates 604 

for SEM and TEM. (F) Parasite transmigration across polarized monolayers was quantified by 605 

sampling the basal compartment for YFP-parasites after their addition to the apical compartment, 606 

using flow cytometry. (G) Intracellular parasites are contained within a parasitophorous vacuole 607 

appearing as a white halo surrounding the parasite (arrow) following H&E staining. Scale bar = 608 

20 µm. (H) Supernatant from IECs, cultured in six well dishes and exposed to 1.5 x 10
6
 parasites 609 

for 24 h, were assayed for the presence of cytokines using a bead array. Data represents three 610 

independent experiments with biological replicates.
 *** 

P <0.0001. (I-K) 2-Photon-microscope 611 

live imaging of IEC-6 monolayers (red) exposed to T.gondii (green) (See Video S1). Sequential 612 

frames from Video S1 show a transmigrating parasite targeting the epithelial cellular junction 613 

(white arrows). Following initial localization to the cellular junction (I), the parasite re-orientates 614 

(J) and enters the paracellular junction (K). A static intracellular parasite is clearly visible (White 615 

arrowheads). Corresponding YZ images show the parasite (marked *) localizes above the 616 

epithelial cellular junction (I’), re-orientates and moves between cells in the paracellular junction 617 

(J’) and transmigrates through the epithelium (K’). The paracellular junction region is visible as a 618 
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non-stained space between cells (red). Images are representative of those obtained from two 619 

experiments with replicates. Scale bar = 5 μm. 620 

 621 

Figure 2: T. gondii alters the distribution of occludin. (A-E) m-ICc12 cells grown on inserts 622 

were exposed to either media alone (A) or with parasites for 0.5 h (B), 2 h (C), 6 h (D) or 24 h 623 

(E), prior to staining with anti-occludin antibodies (red). A'-E' represents XZ images of 624 

corresponding XY optical slide images. Scale bar = 20 µm. Images are representative of those 625 

collected from over ten experiments with biological replicates. (F) Image quantification was used 626 

to assess occludin distribution across membrane and cytoplasmic cellular compartments as well 627 

as total cellular levels of occludin (G) prior and post exposure to parasites. The graphs represent 628 

image quantification of between 30 and 90 cells across 3 to 10 independent experiments using 629 

Image J. ** = P<0.002 and P<0.0001 comparing with no exposure to parasites.  630 

 631 

Figure 3: T. gondii does not globally affect junctional proteins or epithelial barrier function. 632 

(A) m-ICc12 cells were stained for claudin-2, ZO-1 or β-catenin, pre- and post-infection (2 h or 6 633 

h) with live parasites. Scale bar = 20 µm. Results are representative of 3 or more independent 634 

experiments with replicates. (B) Changes in barrier function were assessed by measuring TEER 635 

in response to parasites after 2 h exposure. The data shown represents results from seven separate 636 

determinations with biological replicates. P = 0.2. (C) Epithelial permeability was assessed by 637 

measuring transmigration of FITC-dextran across epithelial cells cultured in transwells prior and 638 

after 2 h exposure to parasites. The data shown represents results from three separate 639 

determinations with biological replicates. P = 0.4. 640 

 641 

Figure 4: T. gondii co-localizes with occludin during infection and transmigration. (A) m-642 

ICc12 cells were exposed to T. gondii (green) for 2 h and stained for occludin (red) with co-643 

localization (arrows) appearing yellow. Magnified images of individual cells show a 644 
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transmigrating parasite (B) and an internalized parasite (C). (D) and (E) highlight occludin-645 

parasite co-localization in the XZ plane. Anti-occludin antibodies do not stain the parasites in 646 

isolation (F). By 24 h post-infection occludin is redistributed intracellularly (G) with multiple 647 

parasites residing within infected cells (H). (I) shows the merged (G) and (H) images. Scale bar = 648 

20 µm. Images are representative of those from three to ten independent experiments with 649 

biological replicates.  650 

 651 

Figure 5: Reduction of occludin expression impacts on parasite infection and 652 

transmigration. m-ICc12 were cultured on plastic to 80% confluency before adding occludin 653 

small interfering (siRNA) or non-silencing siRNA (scRNA). (A) Reduction of occludin was 654 

determined by immunoblotting 48 h post-transfection. Immunoblots were analyzed by 655 

densitometry with the values graphically shown, representing the levels of occludin in siRNA 656 

cell lysates relative to non-silenced siRNA-treated cells. Data is a representative from one of 657 

three independent experiments. Barrier function of siRNA-treated cells was assessed by 658 

measuring TEER (B, P = 0.5673) and permeability to FITC-dextran at 2 h post-parasite infection 659 

(C, P = 0.83). A value of 100% represents no change in TEER. The data shown represents results 660 

from three or more independent experiments with replicates. (D and E) m-ICc12 cells on 661 

coverslips were H&E stained to visualize and count parasites. Parasites that did not appear to 662 

have a white halo, indicative of intracellular parasitophorous vacuoles containing parasites, were 663 

assumed to be attached but not intracellular (D). Data represents results from four independent 664 

experiments with biological replicates. 
* 

P = 0.0129. (E) Infectivity of siRNA-treated cells was 665 

determined by counting the number of H&E-stained cells infected with parasites. Between 48 666 

and 73 fields of view were recorded for each treatment with the data shown representing the 667 

percentage of cells infected compared to non-treated cells from four independent experiments 668 

with replicates. 
* 

P = 0.0191. (F) The ability of parasites to transmigrate occludin-reduced cells 669 

was determined in transwell cultures using flow cytometry to visualize and quantify parasites 670 
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appearing in the basal compartment 2 h post-infection. The data shown represents results from 671 

three independent experiments with biological replicates. 
*
 P = 0.0157. (G) To establish that 672 

there were no discrepancies in the initial number of parasites incubated with the cells, parasites 673 

were collected and counted from the apical chamber of cells grown on transwell inserts.  Data 674 

represents results from three independent experiments with biological replicates. P = 0.9705. (H-675 

K) Cells grown on inserts for 11 days were treated with either occludin-specific siRNA or non-676 

specific siRNA. (H) Cells were visualized for the presence of occludin 48 h post-transfection. 677 

Cells were also visualized for changes in occludin distribution following exposure to T. gondii 678 

for 2 h. Images are representative of 4 independent experiments. (I-K) Other junctional proteins 679 

were not affected by the reduction of occludin. Images represent data from three or more 680 

independent experiments. Scale bar = 20 μm.  681 

 682 

Figure 6: Recombinant murine occludin peptides. (A) Occludin peptides corresponding to 683 

amino acids 191-241 (full length ECL2), 85-241 (full length ECL1-ECL2) and 261-521 (full 684 

length C-terminus) were generated as described in the Materials and Methods section. Amino 685 

acid number and distribution across the N terminus, transmembrane domains (TM), extracellular 686 

loops (ECL), intracellular loop (IL) and C-terminus were adapted from 687 

www.zonapse.net/occludin. (B) Peptide purity was assessed by immunoblotting using 688 

commercial anti-occludin antibodies. 689 

 690 

Figure 7: T. gondii binds the extracellular loops of occludin. (A) The apical surface of IEC-6 691 

weas exposed for 2 h with either T. gondii (control) or T. gondii pre-incubated with 2μM 692 

recombinant occludin peptides and were subsequently stained with H&E to visualize and count 693 

parasites. Parasites that did not have a white halo, indicative of intracellular parasitophorous 694 

vacuoles containing parasites, were assumed to be attached but not intracellular. Between 6 and 695 

http://www.zonapse.net/occludin


31 
 
12 fields of view were recorded for each treatment with the data shown representing the 696 

normalized change in parasite attachment when parasites were pre-incubated with recombinant 697 

occludin peptides compared to non-treated parasites (control). Data shown is from three 698 

independent experiments with replicates. 
*** 

= P<0.001 
**** 

= P<0.0001. (B and C) In a solid-699 

phase parasite-occludin binding assay YFP-parasites were incubated with HIS-tagged 700 

ECL1+ECL2, ECL1, ECL2, or C-terminus fragments of murine occludin immobilized to 701 

individual wells of a chamber slide with bound parasites visualized by UV microscopy. Wells 702 

containing a HIS-tagged mCherry recombinant protein and/or binding buffer alone (Control) 703 

were used as controls. (B) Binding of parasites to occludin peptides was quantified by 704 

fluorescent pixel counts using 6-12 fields of view per well (
*
= P<0.05 

**
 = P<0.01). Data 705 

represents three independent experiments with replicates. (C) The fluorescent images shown are 706 

representative of those obtained from three experiments with replicates. Scale bar = 20 µm.  707 
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th
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Manuscript Reference No: MICINF-D-15-00103 

 

 

Dear Dr. Denkers, 

 

Thank you very much for reviewing our manuscript. We have read through the comments and recognize the 

points raised are important to address. Below we have detailed our response to each of the reviewer’s 

comments: 

 

Underlining highlights corrections made to the text. 

 

Reviewer #1: 

 

1. The authors show that parasites cluster around cellular junctions and use a paracellular route. Taken 

together, this is convincing, however the information contained in the TEM images in fig.1B and 1E needs to 

be better explained to the reader. Cell edges (1B) and intracellular structures (1E) are not very clear. 

 

Response: We appreciate that a better explanation was required and have adjusted the text accordingly.  

 

 

2. Redistribution of occludin (fig 2). It is difficult to evaluate the redistribution of occludin as no information is 

provided in M&M or figure legends on what focal planes and cut-offs were utilized to quantify fluorescence in 

"membrane" or "cytoplasm". As a putative direct interaction of the parasite with occludin is central to the 

manuscript, this should be clarified. The redistribution of occludin should also be related to other markers 

studied in fig 3 (claudin-2, zonula occludens-1, beta-catenin). The authors state that "distribution of other 

junctional proteins was not obviously altered" but that "slight differences may be attributed to indirect effects". 

This needs to be addressed and clarified. 

 

Response: We agree that clarification of methods would improve the understanding of how our data was 

collected and have made changes to address this comment. We have also improved our description of the 

text relating to indirect effects of other tight junction proteins.  

 

 

3. The evidence that tachyzoites co-localize or are in close vicinity of occludin when transmigrating is 

convincing (fig 4). However, the evidence of tachyzoite interaction with occludin (fig 6) is indirect. Have the 

authors tried to block transmigration with the generated occludin peptides? In theory, the peptides should 

compete with binding of tachyzoites to native occludin and thus could add evidence to the proposed 

interaction and also add functionality to this manuscript. 

 

Response: We have included data from an epithelial cell attachment and invasion assay using occludin 

peptides. Whilst it was not possible due to technical reasons (difficulty of producing sufficient amounts of 

ECL1) to include all of the peptides used in the parasite-binding assay as in this invasion assay, the data does 

show that the ECL1+ECL2 peptide significantly reduce the ability of parasites to attach and invade epithelial 

cells whereas the ECL2 peptide has no discernable effect (Figure 7A). This is consistent with the occuldin 

peptide-parasite binding assay data (Figure 7B) and that parasite binding to occludin principally involves the 

ECL1 region of the tight junction protein.  

Response to Reviewers Letter



 

 

4. As the tachyzoite stage is not the natural stage for oral infection, stating (page 11) that tachyzoites are 

infective via the oral route without further explanation of the experimental setups or a statement that 

bradyzoites/oocysts are the "natural" infection stages could be misleading to some readers. 

 

Response:  We have expanded our text and included the reviewer’s suggestion to state the natural infection 

routes.  

 

 

 

Reviewer #2: 

 

The manuscript by Weight et al describes the involvement of the tight junction protein occludin in the 

transmigration of Toxoplasma gondii through the epithelial barrier. Were also other proteins except ZO-1, 

claudin-2 and beta-catenin used as controls? Why were these selected? Immortalized cell lines are known to 

lose their characteristics therefore primary cells should be applied as controls. 

 

Response: We also used a second control tight junction protein but as the results were the same as with the 

first control protein we decided that this information was not necessary to show. However, we acknowledge 

that the reasons we chose Claudin-2, beta catenin and ZO-1 are not fully stated. This has now been 

incorporated in the text. While the authors agree that for any study primary cells could be used as controls, 

this is technically very challenging due the difficulty of maintaining fully differentiated primary cells in vitro for 

prolonged periods of time. Our study was conducted on cell lines that have been fully characterized previously 

to show exceptional and important characteristics found in vivo. It is also important to note that in contrast to 

the large number of colonic epithelial cell lines available, the two epithelial cell lines we have used in our study 

are the only ones available, irrespective of the species of origin, that originate from and are representative of 

those cells of the small intestine.  

 

 

I hope that the revisions we have made are acceptable to the reviewers and that the manuscript can now be 

viewed as meeting the criteria for publication in Microbes and Infection. 

 

Sincerely, 

 

 
 

Simon R. Carding 

(on behalf of the authors) 



Video
Click here to download e-component: VIDEO S1.avi

http://ees.elsevier.com/micinf/download.aspx?id=101405&guid=e3bb23f1-08e3-4c01-8848-eb80888f076e&scheme=1


Video Still
Click here to download high resolution image

http://ees.elsevier.com/micinf/download.aspx?id=101404&guid=91422799-5489-4f00-916d-630aa105e535&scheme=1

