6,809 research outputs found

    Spectral data for doubly excited states of helium with non-zero total angular momentum

    Full text link
    A spectral approach is used to evaluate energies and widths for a wide range of singlet and triplet resonance states of helium. Data for total angular momentum L=1,...,4L=1,...,4 is presented for resonances up to below the 5th single ionization threshold. In addition the expectation value of cos⁥(Ξ12)\cos(\theta_{12}) is given for the calculated resonances.Comment: 35 pages, 16 tables, to be published in Atomic Data and Nuclear Data Table

    Strangeness in Neutron Stars

    Get PDF
    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.Comment: 16 pages, 5 figures, 3 tables; Accepted for publication in the Proceedings of the International Workshop on Astronomy and Relativistic Astrophysics (IWARA) 2005, Int. J. Mod. Phys.

    Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions

    Full text link
    A new scheme for testing nuclear matter equations of state (EsoS) at high densities using constraints from neutron star phenomenology and a flow data analysis of heavy-ion collisions is suggested. An acceptable EoS shall not allow the direct Urca process to occur in neutron stars with masses below 1.5 M⊙1.5~M_{\odot}, and also shall not contradict flow and kaon production data of heavy-ion collisions. Compact star constraints include the mass measurements of 2.1 +/- 0.2 M_sun (1 sigma level) for PSR J0751+1807, of 2.0 +/- 0.1 M_sun from the innermost stable circular orbit for 4U 1636-536, the baryon mass - gravitational mass relationships from Pulsar B in J0737-3039 and the mass-radius relationships from quasiperiodic brightness oscillations in 4U 0614+09 and from the thermal emission of RX J1856-3754. This scheme is applied to a set of relativistic EsoS constrained otherwise from nuclear matter saturation properties with the result that no EoS can satisfy all constraints simultaneously, but those with density-dependent masses and coupling constants appear most promising.Comment: 15 pages, 8 figures, 5 table

    Strong field double ionization of H2 : Insights from nonlinear dynamics

    Get PDF
    The uncorrelated (``sequential'') and correlated (``nonsequential'') double ionization of the H2 molecule in strong laser pulses is investigated using the tools of nonlinear dynamics. We focus on the phase-space dynamics of this system, specifically by finding the dynamical structures that regulate these ionization processes. The emerging picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons. Our analysis leads to verifiable predictions of the intensities where qualitative changes in ionization occur. We also show how these findings depend on the internuclear distance

    One-dimensional phase transitions in a two-dimensional optical lattice

    Full text link
    A phase transition for bosonic atoms in a two-dimensional anisotropic optical lattice is considered. If the tunnelling rates in two directions are different, the system can undergo a transition between a two-dimensional superfluid and a one-dimensional Mott insulating array of strongly coupled tubes. The connection to other lattice models is exploited in order to better understand the phase transition. Critical properties are obtained using quantum Monte Carlo calculations. These critical properties are related to correlation properties of the bosons and a criterion for commensurate filling is established.Comment: 14 pages, 8 figure

    Implied Open‐circuit Voltage Imaging via a Single Bandpass Filter Method—Its First Application in Perovskite Solar Cells

    Get PDF
    A novel, camera-based method for direct implied open-circuit voltage (iVOC_{OC}) imaging via the use of a single bandpass filter (s-BPF) is developed for large-area photovoltaic solar cells and precursors. The photoluminescence (PL) emission is imaged using a narrow BPF with centre energy inside the high-energy tail of the PL emission, utilising the close-to-unity and nearly constant absorptivity of typical photovoltaic devices in this energy range. As a result, the exact value of the sample\u27s absorptivity within the BPF transmission band is not required. The use of an s-BPF enables a fully contactless approach to calibrate the absolute PL photon flux for spectrally integrated detectors, including cameras. The method eliminates the need for knowledge of the imaging system spectral response. Through an appropriate choice of the BPF centre energy, a range of absorber compositions or a single absorber with different surface morphologies, such as planar and textured, can be imaged, all without the need for additional detection optics. The feasibility of this s-BPF method is first validated. The relative error in iVOC_{OC} is determined to be ≀1.5%. The method is then demonstrated on device stacks with two different perovskite compositions commonly used in single-junction and monolithic tandem solar cells

    Implied Open‐circuit Voltage Imaging via a Single Bandpass Filter Method—Its First Application in Perovskite Solar Cells

    Get PDF
    A direct, camera-based implied open-circuit voltage (iVOC) imaging method via the novel use of a single bandpass filter (s-BPF) is developed for large-area photovoltaic solar cells and solar cell precursors. This method images the photoluminescence (PL) emission using a narrow BPF with centre energy in the high-energy tail of the PL emission taking advantage of the close-to-unity absorptivity of typical photovoltaic devices with low variability in this energy range. As a result, the exact value of the sample\u27s absorptivity within the BPF transmission band is not required. The use of a s-BPF enables the adaptation of a fully contactless approach to calibrate the absolute PL photon flux for camera-based spectrally-integrated imaging tools. The method eliminates the need for knowledge of the imaging system spectral response and the use of the emission and excitation spectral shapes. Through an appropriate choice of the BPF centre energy, a range of absorber compositions or a single absorber with different surface morphologies (e.g., planar vs textured) can be imaged, all without the need for additional detection optics. The feasibility of this s-BPF method is first assessed using a high-quality Cs0.05_{0.05}FA0.79_{0.79}MA0.16_{0.16}Pb(I0.83_{0.83}Br0.17_{0.17})3_3 perovskite neat film. The error in iVOC is determined to be less than 1.5%. The efficacy of the method is then demonstrated on device stacks with two different perovskite compositions commonly used in single-junction and monolithic tandem solar cells

    Expression and Purification of Recombinant Hemoglobin in Escherichia coli

    Get PDF
    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and ÎČ-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and ÎČ-chain subunit combinations by means of cassette mutagenesis
    • 

    corecore