It is generally agreed on that the tremendous densities reached in the
centers of neutron stars provide a high-pressure environment in which several
intriguing particles processes may compete with each other. These range from
the generation of hyperons to quark deconfinement to the formation of kaon
condensates and H-matter. There are theoretical suggestions of even more exotic
processes inside neutron stars, such as the formation of absolutely stable
strange quark matter. In the latter event, neutron stars would be largely
composed of strange quark matter possibly enveloped in a thin nuclear crust.
This paper gives a brief overview of these striking physical possibilities with
an emphasis on the role played by strangeness in neutron star matter, which
constitutes compressed baryonic matter at ultra-high baryon number density but
low temperature which is no accessible to relativistic heavy ion collision
experiments.Comment: 16 pages, 5 figures, 3 tables; Accepted for publication in the
Proceedings of the International Workshop on Astronomy and Relativistic
Astrophysics (IWARA) 2005, Int. J. Mod. Phys.