945 research outputs found
Dependence of the Chiral Symmetry Restoration Transition on the Quark Self-Energy Kernel
The dependence of the dressed quark propagator on the quark chemical
potential is investigated in various models based on the Dyson-Schwinger
equations. We find that the critical chemical potential of the chiral symmetry
restoration transition is strongly dependent on the nature of the interaction
kernel in the infrared region.Comment: 10 pages, 3 figures, minor change to introduction, accepted for
publication in Phys. Lett.
Protein for Life: Review of Optimal Protein Intake, Sustainable Dietary Sources and the Effect on Appetite in Ageing Adults
With an ageing population, dietary approaches to promote health and independence later in life are needed. In part, this can be achieved by maintaining muscle mass and strength as people age. New evidence suggests that current dietary recommendations for protein intake may be insufficient to achieve this goal and that individuals might benefit by increasing their intake and frequency of consumption of high-quality protein. However, the environmental effects of increasing animal-protein production are a concern, and alternative, more sustainable protein sources should be considered. Protein is known to be more satiating than other macronutrients, and it is unclear whether diets high in plant proteins affect the appetite of older adults as they should be recommended for individuals at risk of malnutrition. The review considers the protein needs of an ageing population (>40 years old), sustainable protein sources, appetite-related implications of diets high in plant proteins, and related areas for future research
An optimal series expansion of the multiparameter fractional Brownian motion
We derive a series expansion for the multiparameter fractional Brownian
motion. The derived expansion is proven to be rate optimal.Comment: 21 pages, no figures, final version, to appear in Journal of
Theoretical Probabilit
Modeling the strangeness content of hadronic matter
The strangeness content of hadronic matter is studied in a string-flip model
that reproduces various aspects of the QCD-inspired phenomenology, such as
quark clustering at low density and color deconfinement at high density, while
avoiding long range van der Waals forces. Hadronic matter is modeled in terms
of its quark constituents by taking into account its internal flavor (u,d,s)
and color (red, blue, green) degrees of freedom. Variational Monte-Carlo
simulations in three spatial dimensions are performed for the ground-state
energy of the system. The onset of the transition to strange matter is found to
be influenced by weak, yet not negligible, clustering correlations. The phase
diagram of the system displays an interesting structure containing both
continuous and discontinuous phase transitions. Strange matter is found to be
absolutely stable in the model.Comment: 14 pages, 1 table, 8 eps figures, revtex. Submitted to Phys. Rev. C,
Presented at INPC2001 Berkeley, Ca. july 29-Aug
A weakly stable algorithm for general Toeplitz systems
We show that a fast algorithm for the QR factorization of a Toeplitz or
Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A.
Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx =
A^Tb, we obtain a weakly stable method for the solution of a nonsingular
Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the
solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further
details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm
Properties of the Interstellar Medium and the Propagation of Cosmic Rays in the Galaxy
The problem of the origin of cosmic rays in the shocks produced by supernova
explosions at energies below the so called 'knee' (at ~3*10 GeV) in the
energy spectrum is addressed, with special attention to the propagation of the
particles through the inhomogenious interstellar medium and the need to explain
recent anisotropy results, [1]. It is shown that the fractal character of the
matter density and magnetic field distribution leads to the likelihood of a
substantial increase of spatial fluctuations in the cosmic ray energy spectra.
While the spatial distribution of cosmic rays in the vicinity of their sources
(eg. inside the Galactic disk) does not depend much on the character of
propagation and is largely determined by the distribution of their sources, the
distribution at large distances from the Galactic disk depends strongly on the
character of the propagation. In particular, the fractal character of the ISM
leads to what is known as 'anomalous diffusion' and such diffusion helps us to
understand the formation of Cosmic Ray Halo. Anomalous diffusion allows an
explanation of the recent important result from the Chacaltaya extensive air
shower experiment [1], viz. a Galactic Plane Enhancement of cosmic ray
intensity in the Outer Galaxy, which is otherwise absent for the case of the
so-called 'normal' diffusion. All these effects are for just one reason:
anomalous diffusion emphasizes the role of local phenomena in the formation of
cosmic ray characteristics in our Galaxy and elsewhere.Comment: 18 pages, 5 figures, accepted by Astropartoicle Physic
Oblique triangular antiferromagnetic phase in CsCuCoCl
The spin-1/2 stacked triangular antiferromagnet CsCuCoCl with
undergoes two phase transitions at zero field. The
low-temperature phase is produced by the small amount of Co doping. In
order to investigate the magnetic structures of the two ordered phases, the
neutron elastic scattering experiments have been carried out for the sample
with . It is found that the intermediate phase is identical to
the ordered phase of CsCuCl, and that the low-temperature phase is an
oblique triangular antiferromagnetic phase in which the spins form a triangular
structure in a plane tilted from the basal plane. The tilting angle which is
42 at K decreases with increasing temperature, and becomes
zero at K. An off-diagonal exchange term is proposed as the
origin of the oblique phase.Comment: 6 pages, 7 figure
The first long-read nuclear genome assembly of Oryza australiensis, a wild rice from northern Australia
Oryza australiensis is a wild rice native to monsoonal northern Australia. The International Oryza Map Alignment Project emphasises its significance as the sole representative of the EE genome clade. Assembly of the O. australiensis genome has previously been challenging due to its high Long Terminal Repeat (LTR) retrotransposon (RT) content. Oxford Nanopore long reads were combined with Illumina short reads to generate a high-quality ~ 858 Mbp genome assembly within 850 contigs with 46× long read coverage. Reference-guided scaffolding increased genome contiguity, placing 88.2% of contigs into 12 pseudomolecules. After alignment to the Oryza sativa cv. Nipponbare genome, we observed several structural variations. PacBio Iso-Seq data were generated for five distinct tissues to improve the functional annotation of 34,587 protein-coding genes and 42,329 transcripts. We also report SNV numbers for three additional O. australiensis genotypes based on Illumina re-sequencing. Although genetic similarity reflected geographical separation, the density of SNVs also correlated with our previous report on variations in salinity tolerance. This genome re-confirms the genetic remoteness of the O. australiensis lineage within the O. officinalis genome complex. Assembly of a high-quality genome for O. australiensis provides an important resource for the discovery of critical genes involved in development and stress tolerance.Aaron L. Phillips, Scott Ferguson, Nathan S. Watson, Haigh, Ashley W. Jones, Justin O. Borevitz, Rachel A. Burton, Brian J. Atwel
Magnetic and thermal properties of 4f-3d ladder-type molecular compounds
We report on the low-temperature magnetic susceptibilities and specific heats
of the isostructural spin-ladder molecular complexes L[M(opba)]_{3\cdot
xDMSOHO, hereafter abbreviated with LM (where L =
La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing
complexes (with the exception of LaCu) undergo long range magnetic
order at temperatures below 2 K, and that for GdCu this ordering is
ferromagnetic, whereas for TbCu and DyCu it is probably
antiferromagnetic. The susceptibilities and specific heats of TbCu
and DyCu above have been explained by means of a model
taking into account nearest as well as next-nearest neighbor magnetic
interactions. We show that the intraladder L--Cu interaction is the predominant
one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy
and Ho containing complexes, strong crystal field effects on the magnetic and
thermal properties have to be taken into account. The magnetic coupling between
the (ferromagnetic) ladders is found to be very weak and is probably of dipolar
origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
- …