219 research outputs found

    Decision making ability and thermoregulation in extreme environments during goal line official-like movement patterns

    Get PDF
    Thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of MSc by ResearchGoal line officials (GLO) are exposed to extreme environmental conditions when employed to officiate in European cup competitions. Extreme environments have been shown previously to affect various facets of cognitive function. The present study aimed to investigate the effect of such environments on GLO. 13 male participants were exposed to 3 conditions, cold (-5 oC, 50% RH); temperate (18 oC, 50% RH); and hot (30 oC, 50% RH) for 90 minutes per condition, with a 15 minutes half time break after 45 minutes. Decision making ability was measured; using the Psyche Software Package, prior to each exposure (0 minutes), at the end of the first half (45 minutes), immediately after half time (45 minutes), and at the end of the second half (90 minutes). Exposure to cold conditions reduced positive stimuli responses (HIT scores) significantly when compared to hot conditions (P<0.05). Participants ability to track stimuli was also significantly reduced in cold conditions when compared to temperate and hot conditions (P<0.05). Reductions in decision making ability were coupled with reductions in physiological measures; cold exposure significantly reduced core temperature, skin temperature and thermal comfort when compared to temperate and hot conditions (P<0.05). The diminishment in GLO decision making ability during exposure to cold conditions, most notably the ability to respond positively to an infringement and the ability to track important stimuli, e.g. the football and goal line/player, are concerns which could negatively affect the outcome of a football match. Such findings should be considered by football’s governing bodies when assessing the implementation of goal line technology and/or the continued use of GLO

    Athermal Phonon Sensors in Searches for Light Dark Matter

    Full text link
    In recent years, theoretical and experimental interest in dark matter (DM) candidates have shifted focus from primarily Weakly-Interacting Massive Particles (WIMPs) to an entire suite of candidates with masses from the zeV-scale to the PeV-scale to 30 solar masses. One particular recent development has been searches for light dark matter (LDM), which is typically defined as candidates with masses in the range of keV to GeV. In searches for LDM, eV-scale and below detector thresholds are needed to detect the small amount of kinetic energy that is imparted to nuclei in a recoil. One such detector technology that can be applied to LDM searches is that of Transition-Edge Sensors (TESs). Operated at cryogenic temperatures, these sensors can achieve the required thresholds, depending on the optimization of the design. In this thesis, I will motivate the evidence for DM and the various DM candidates beyond the WIMP. I will then detail the basics of TES characterization, expand and apply the concepts to an athermal phonon sensor--based Cryogenic PhotoDetector (CPD), and use this detector to carry out a search for LDM at the surface. The resulting exclusion analysis provides the most stringent limits in DM-nucleon scattering cross section (comparing to contemporary searches) for a cryogenic detector for masses from 93 to 140 MeV, showing the promise of athermal phonon sensors in future LDM searches. Furthermore, unknown excess background signals are observed in this LDM search, for which I rule out various possible sources and motivate stress-related microfractures as an intriguing explanation. Finally, I will shortly discuss the outlook of future searches for LDM for various detection channels beyond nuclear recoils.Comment: 243 pages, Ph.D. Thesis in Physics at UC Berkele

    Dynamical simulations of an electronically induced solid-solid phase transformation in tungsten

    Get PDF
    The rearrangement of a material's electron density during laser irradiation leads to modified nonthermal forces on the atoms that may lead to coherent atomic motions and structural phase transformation on very short time scales. We present ab initio molecular dynamics simulations of a martensitic solid-solid phase transformation in tungsten under conditions of strong electronic excitation. The transformation is ultrafast, taking just over a picosecond, and follows the tetragonal Bain path. To examine whether a solid-solid bcc-fcc phase transformation could occur during laser irradiation, we use two-temperature molecular dynamics (2T-MD) simulations with a specially developed potential dependent on the electronic temperature. Our simulations show that the occurrence of the solid-solid phase transformation is in competition with ultrafast nonthermally assisted melting with the strength of the electron-phonon coupling determining the lifetime of the new solid phase. In tungsten the melting transition is predicted to occur too rapidly for the fcc phase to be detectable during laser irradiation

    Learning from Monte Carlo Rollouts with Opponent Models for Playing Tron

    Get PDF
    This paper describes a novel reinforcement learning system for learning to play the game of Tron. The system combines Q-learning, multi-layer perceptrons, vision grids, opponent modelling, and Monte Carlo rollouts in a novel way. By learning an opponent model, Monte Carlo rollouts can be effectively applied to generate state trajectories for all possible actions from which improved action estimates can be computed. This allows to extend experience replay by making it possible to update the state-action values of all actions in a given game state simultaneously. The results show that the use of experience replay that updates the Q-values of all actions simultaneously strongly outperforms the conventional experience replay that only updates the Q-value of the performed action. The results also show that using short or long rollout horizons during training lead to similar good performances against two fixed opponents

    INCREMENTAL LEARNING OF PROCEDURAL PLANNING KNOWLEDGE IN CHALLENGING ENVIRONMENTS

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75646/1/j.1467-8640.2005.00280.x.pd

    A pipeline for making 31 P NMR accessible for small- and large-scale lipidomics studies

    Get PDF
    Abstract: Detailed molecular analysis is of increasing importance in research into the regulation of biochemical pathways, organismal growth and disease. Lipidomics in particular is increasingly sought after as it provides insight into molecular species involved in energy storage, signalling and fundamental cellular structures. This has led to the use of a range of tools and techniques to acquire lipidomics data. 31P NMR for lipidomics offers well-resolved head group/lipid class analysis, structural data that can be used to inform and strengthen interpretation of mass spectrometry data and part of a priori structural determination. In the present study, we codify the use of 31P NMR for lipidomics studies to make the technique more accessible to new users and more useful for a wider range of questions. The technique can be used in isolation (phospholipidomics) or as a part of determining lipid composition (lipidomics). We describe the process from sample extraction to data processing and analysis. This pipeline is important because it allows greater thoroughness in lipidomics studies and increases scope for answering scientific questions about lipid-containing systems

    Lipid Traffic Analysis reveals the impact of high paternal carbohydrate intake on offsprings’ lipid metabolism

    Get PDF
    Abstract: In this paper we present an investigation of parental-diet-driven metabolic programming in offspring using a novel computational network analysis tool. The impact of high paternal carbohydrate intake on offsprings’ phospholipid and triglyceride metabolism in F1 and F2 generations is described. Detailed lipid profiles were acquired from F1 neonate (3 weeks), F1 adult (16 weeks) and F2 neonate offspring in serum, liver, brain, heart and abdominal adipose tissues by MS and NMR. Using a purpose-built computational tool for analysing both phospholipid and fat metabolism as a network, we characterised the number, type and abundance of lipid variables in and between tissues (Lipid Traffic Analysis), finding a variety of reprogrammings associated with paternal diet. These results are important because they describe the long-term metabolic result of dietary intake by fathers. This analytical approach is important because it offers unparalleled insight into possible mechanisms for alterations in lipid metabolism throughout organisms

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
    • …
    corecore