7%
university of 5%,
groningen % %

i

University Medical Center Groningen

University of Groningen

Learning from Monte Carlo Rollouts with Opponent Models for Playing Tron
Knegt, Stefan; Drugan, Madalina M.; Wiering, Marco

Published in:
ICAART 2018

DOI:
10.1007/978-3-030-05453-3_6

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):

Knegt, S., Drugan, M. M., & Wiering, M. (2018). Learning from Monte Carlo Rollouts with Opponent Models
for Playing Tron. In J. van den Herik , & A. Rocha (Eds.), ICAART 2018: Agents and Artificial Intelligence
(pp. 105-129). (Lecture Notes in Computer Science book series ; Vol. 11352). Springer.
https://doi.org/10.1007/978-3-030-05453-3_6

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-11-2022

https://doi.org/10.1007/978-3-030-05453-3_6
https://research.rug.nl/en/publications/dd51dbe3-10af-4fee-ba74-77355bc8929e
https://doi.org/10.1007/978-3-030-05453-3_6

Learning from Monte Carlo Rollouts with
Opponent Models for Playing Tron

Stefan J.L. Knegt!, Madalina M. Drugan?, and Marco A. Wiering'

! Institute of Artificial Intelligence and Cognitive Engineering
University of Groningen, The Netherlands
stefanknegt@gmail.com, m.a.wiering@rug.nl
2 ITLearns.Online, The Netherlands

madalina.drugan@gmail.com

Abstract. This paper describes a novel reinforcement learning system
for learning to play the game of Tron. The system combines Q-learning,
multi-layer perceptrons, vision grids, opponent modelling, and Monte
Carlo rollouts in a novel way. By learning an opponent model, Monte
Carlo rollouts can be effectively applied to generate state trajectories
for all possible actions from which improved action estimates can be
computed. This allows to extend experience replay by making it possible
to update the state-action values of all actions in a given game state
simultaneously. The results show that the use of experience replay that
updates the Q-values of all actions simultaneously strongly outperforms
the conventional experience replay that only updates the Q-value of the
performed action. The results also show that using short or long rollout
horizons during training lead to similar good performances against two
fixed opponents.

Keywords: Reinforcement Learning - Opponent Modelling - Games -
Monte Carlo Rollouts - Multi-layer Perceptrons

1 Introduction

Reinforcement learning (RL) algorithms [2I] allow an agent to learn to play
a game from trial and error by observing the result of each game. Often the
result of a single game provides little information to learn from, as in many
cases the game rules only return a value 1, 0, or -1 depending whether the
game was won, ended in a draw, or was lost by the agent. Therefore, many
games need to be played in order to learn which moves are optimal in each game

3 Cite this paper as: S.J.L. Knegt, M.M. Drugan and M.A. Wiering.
Learning from Monte Carlo Rollouts with Opponent Models for Playing
Tron. Agents and Artificial Intelligence. Springer International Publish-
ing. edited by: J. van den Herik and A.P. Rocha. 2019. Pages 105-129.
DOLI: 10.1007/978-3-030-05453. https://www.springerprofessional.de/en/
learning-from-monte-carlo-rollouts-with-opponent-models-for-play/
16365998

https://www.springerprofessional.de/en/learning-from-monte-carlo-rollouts-with-opponent-models-for-play/16365998
https://www.springerprofessional.de/en/learning-from-monte-carlo-rollouts-with-opponent-models-for-play/16365998
https://www.springerprofessional.de/en/learning-from-monte-carlo-rollouts-with-opponent-models-for-play/16365998

2 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

state. Furthermore, games usually consist of very large state spaces and therefore
appropriate function approximation techniques need to be used to generalize
over the state space. The oldest self-learning program that learned to play a
game is Samuel’s checkers playing program [I3]. It combined several machine
learning methods and reached a decent amateur level in playing checkers. A very
successful attempt to using reinforcement learning to play games is TD-Gammon
[22], that learned to play the game of Backgammon at human expert level using
temporal difference learning [20] and multi-layer perceptrons. Although in the
'90s, learning from 1.5 million games took multiple months, with the current
computing power this can be done within several hours. A more recent and
even more impressive system is AlphaGo Zero [I§] which learned to play the
complex game of Go from scratch and was able to beat its predecessor AlphaGo
[16], which first learned from games played by human players and was able to
beat the human Grandmaster Lee Sedol in 2016. AlphaGo Zero combines several
techniques in a novel and effective manner: reinforcement learning, Monte Carlo
tree search (MCTS) [§] and deep neural networks [14] by training a value function
to predict the result of a game and a policy network on the frequency with which
moves were selected in the MCTS rollout phase. AlphaGo Zero was later followed
by AlphaZero [I7] that learned to play chess and shogi from scratch according
to the same principles as AlphaGo Zero and was able to strongly outperform
the best previous computer programs for these games. This research has shown
that learning from Monte Carlo tree search results is a very effective method for
mastering different kinds of games.

Although in most game playing programs, no opponent model is learned,
the optimal move in a game state can also depend on the opponent’s playing
style. This holds especially if a fixed opponent is used for playing the game.
Therefore, for such games it would be useful to learn a model of the opponent in
order to predict its moves. In most research on opponent modelling [5/19J6] the
algorithm to learn the opponent model is problem specific and does not learn
quickly. Therefore, in our previous work we developed a novel opponent mod-
elling technique that learns to play the game of Tron and models the playing
style of the fixed opponents simultaneously [7]. This technique was then com-
bined with Monte Carlo rollouts, and the results of this system were much better
than without using the opponent models.

In this paper, we extend our previous research on using reinforcement learning
to play the game of Tron against two fixed opponents. We are primarily inter-
ested if learning from the outcomes of the Monte Carlo rollouts can increase the
performances obtained in [7] even further. Although learning from the results of
lookahead planning has been successfully applied in chess [1I17], Go [18], and
other types of problems, this has not been integrated with learning a model of
the opponent. To deal with the large state spaces of Tron, the learning algorithm
combines Q-learning [24] with a multi-layer perceptron (MLP) [12]. This tech-
nique has already been successfully applied in games such as Backgammon [22],
Ms. PacMan [2] and Starcraft [I5]. Because the field of play in Tron is a 10 x 10
grid, there is no need to use deep reinforcement learning [10], however, as shown

Learning with Opponent Models for Playing Tron 3

in [7], the use of vision grids to give a partial agent-centered representation of
the game state was very effective and will also be used in this paper. Another
extension is that in this paper experience replay [9] will be used in two different
ways to learn from the estimates obtained through the Monte Carlo rollouts.

Contributions: We developed a novel system for learning to play the game
of Tron that combines reinforcement learning, opponent models, and learning
from lookahead planning with Monte Carlo rollouts. To speed-up learning, we
examine two extensions compared to our work described in [7]: 1) Learning from
lookahead planning, where the estimates obtained with Monte Carlo rollouts
are used to train the Q-values of the actions, and 2) Using experience replay
with a replay memory to learn from less games. Furthermore, we created two
different methods in which the agent can learn from the Monte Carlo rollouts
using experience replay: by only learning from the estimates obtained through
the rollouts of the performed action, or learning from the estimates of all possible
actions in a specific game state. By using the learned model of the opponent and
the game rules, estimates are obtained for all actions in each game state that
are used for selecting an action and that can be used for training the system.
Therefore, learning from the rollout estimates of all actions does not require any
computational overhead. Different experiments have been performed with differ-
ent lookahead horizons and numbers of rollouts in order to examine if learning
from the rollouts improves performance. The experiments are performed against
two different fixed opponents and using two different game-state representation
with different sizes of the vision grids. The results show that experience replay is
very effective when training on the Monte Carlo rollout estimates of all actions.
This leads to our new method attaining similar high win rates against the fixed
opponents when learning from 150,000 games instead of the 1.5 million games
used in our previous paper.

Outline: In the next section we explain the previous research we have done,
including a description of the game of Tron and the RL system that was com-
bined with opponent models and Monte Carlo rollouts. In Section 3, the novel
method of learning from Monte Carlo Rollouts with experience replay is de-
scribed. Section 4 describes the experiments and the results. In Section 5, the
conclusions are presented together with possible future work directions.

2 Reinforcement Learning with Opponent Models for
Playing Tron

In this section, we describe our previous approach [7] for learning to play Tron
by self-play. Our RL-Tron system achieved remarkable successes against two
different fixed opponent agents and consists of 3 elements: (1) Q-learning with
multi-layer perceptrons are used to learn an approximation of the state-action
value function, (2) The used multi-layer perceptron is combined with a novel
algorithm for predicting which action the opponent selects in a game state (the
opponent model), (3) The state-action value function and the opponent model

4 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

are used in Monte Carlo rollouts to select an action in a game state based on
future state trajectories during the final test games.

We will first describe the game of Tron. Then we describe the combination of
Q-learning and multi-layer perceptrons. In subsection 2.3, we will describe three
different state representations that were used in [7] for learning to play Tron.
Finally, we will describe the opponent-model learning technique and how it was
used in the Monte Carlo rollouts.

2.1 The Game of Tron

Tron is an arcade video game released in 1982 inspired by the Walt Disney
motion picture Tron. In this game the player guides a light cycle in an arena
against an opponent. The player has to do this, while avoiding the walls and the
trails of light left behind by the opponent and the player itself. Figure [I| depicts
an example game state played by two agents. For this research we developed a
framework in order to use reinforcement learning in this game. This framework
implements the game as a sequential decision problem, where two agents can
play against each other and the environment is represented by a 10 x 10 grid.

At the beginning of a game the agents are randomly placed in either the
top half or bottom half of the grid. At every game state there are four possible
actions: moving up, down, right, or left. It is important to note that one of the
four moves will always lead to the agent hitting its own trail of light. When both
agents have selected a move, the new game state is determined. Whenever two
agents move to the same location in the grid the game ends in a draw as well as
when both agents hit a trail of light or the wall at the same time. In all other
cases, the game continues until one of the two agents hits a trail of light or the
wall. When looking at the possible amount of different game states, we estimate
this to be in the order of 10?°, which is similar to the game Othello that consists
of a board of 7 x 7 cells.

In this research the agent always plays against one fixed opponent at a time
and the opponents employ either a semi-random or semi-deterministic strategy.
The semi-random opponent always randomly selects one of the four possible
moves, unless that move results in an immediate collision. The semi-deterministic
agent always tries to select its previous action and if that would result in a
collision, it selects a random possible action. Therefore, both opponent strategies
are constructed such that the opponent will never move to a location that is
already visited or is a wall, unless there is no other possibility. Although both
strategies seem quite basic, the semi-deterministic strategy can be a relatively
good strategy for the game of Tron. By always selecting the previous action,
if this is possible, the agent makes long trails of light and thereby easily closes
the other agent in, which will eventually lead to this agent losing the game.
We tested the performance of both opponent strategies by letting them play
against each other for many games. The results of these matches showed that
the semi-deterministic strategy (going straight as long as possible) wins in 55%
of the games and loses in 25% of the games, while 20% of the games end in a
draw. From here on we will refer to the agent employing the collision-avoiding

Learning with Opponent Models for Playing Tron 5

Fig. 1. Tron game environment with two agents, where their heads or current locations
are in a darker colour (taken from [7]).

random policy as the random opponent and the semi-deterministic opponent
will be referred to as the deterministic opponent.

2.2 Reinforcement Learning

Reinforcement learning (RL) algorithms allow an agent to learn to optimize its
behavior from its interaction with an environment. Each time-step, an agent
observes the state of the environment and uses this information to select an ac-
tion. Then the state is changed to a next state and the agent receives a scalar
reward signal for this state transition. The aim of the agent is to learn an action-
selection policy that maximizes the obtained future discounted sum of rewards.
Reinforcement learning algorithms can be used to solve different kinds of se-
quential decision problems. Because the game of Tron is fully observable and
the agent plays against a fixed (i.e. non-adaptive) opponent, the game can be
modelled as a Markov Decision Process [11], which is defined by the following
components:

— A set of states S, where s; € S denotes the state at time .

— A set of actions A, where a; € A denotes the action selected at time .

— A transition function T'(s, a, s"), which specifies the probability of moving to
state s’ after selecting action a in state s.

— A reward function R(s,a,s’), which sends a reward signal to the agent for
executing action a in state s and subsequently moving to state s’. r; denotes
the reward obtained at time-step t.

— A discount factor v that makes rewards received further in the future less
important, where 0 <y < 1.

6 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

In the game of Tron, the reward for winning a game is 1, for a draw the
reward is 0, and if the RL agent loses it receives a reward of -1. There are no
other rewards emitted while the game is not over. The environment is stochastic
for the agent, because the agent selects an action and at the same time the
opponent selects an action, after which the state of the game is updated. Because
the agent learns to play against two different opponents that use a stochastic
policy, the game is non-deterministic.

The agent needs to optimize its policy m(s) which outputs an action a given
the current state s. Instead of directly optimizing this policy, value function
based RL algorithms use state-value functions or state-action value functions.
The state-action value function Q7 (s, a) denotes the expected sum of discounted
rewards obtained when the agent selects action a in state s and follows policy 7
afterwards:

o0
Q7 (s,a) :E<Z’ytrt|30 = s, ag :a,ﬂ') (1)
t=0
Where E denotes the expectancy operator. This previous value is almost
impossible to compute, because it involves an expectancy over all possible fu-
ture state sequences which can be arbitrarily long. Instead, by using Bellman’s
equation the computation can be broken up into parts:

Q(st,as) = B(re) +79) Tlst,ar, se41) max Q(s¢+1,a) (2)

St41

For general game-playing programs the transition model is not known, ex-
tremely large, or complex to combine with function approximation techniques.
Furthermore, it is much more effective to use a reinforcement learning algorithm
that learns to focus on parts of the state-space which are most rewarding for the
agent. In many papers about learning to play games with reinforcement learn-
ing, the Q-learning algorithm [24] is used. Q-learning updates the approximation
of the Q-value of a state-action pair denoted as @(st,at) after an experience
(stv at, Tt, StJrl) by:

Q(s0,a1) + Q(s4,a) + alry + ’YmgX@(StHa a) — Q(s¢, ar)) (3)

Where 0 < o < 1 denotes the learning rate. If state s;41 is a terminal state (i.e.
the game is over), the following update is used:

~ ~ ~

Q(8¢,a¢) + Q(s¢,at) + a(ry — Q(s¢, ar)) (4)

Value-function Approximation Because the state space in Tron is very large
(around 10%° different states), we need to combine Q-learning with a function
approximator. For this, we use a multi-layer perceptron (MLP) that receives
as input the game-state representation and outputs the Q-values of the four
different actions. The multi-layer perceptron consists of a single hidden layer and

Learning with Opponent Models for Playing Tron 7

is trained with online backpropagation. After each experience (s, az, ¢, $¢+1) the
target value for the MLP when executing action a; in state s; is:

Qtarget(st’ at) —re+y Inl?X @(5t+1a a) (5)

When a terminal state is reached, the target value is computed by only using
the final reward of the game:

QM9 (¢, ar) < 1y (6)

These target values are then used by backpropagation to update the Q-value
output of the selected action in the given state. Different activation functions
can be used in the hidden layer of the multi-layer perceptron, while we use
a linear activation unit for the output units representing the Q-values of the
different actions. A commonly used activation function in the hidden layer of
RL systems is the sigmoid function that transforms its weighted sum of inputs
a to a value between 0 and 1:

1

O = o=

(7)
Another possible activation function is the exponential linear unit, which has
been shown to perform better when training deep neural networks on image
recognition problems [4]. We therefore compared the performance of the agent
using the sigmoid function and the exponential linear unit (Elu) in the hidden
layer [7]. The exponential linear unit computes the activation of the hidden units
with the following equation:

a ifa>0
Ola) = {5(6“ -1) ifa<0 ®

Where we set 5 to 0.01 after performing some preliminary experiments.

2.3 State Representation

When applying Q-learning to the game of Tron, it is possible to use the entire
game grid (10 x 10) as input for the MLP. This would translate to 100 input
variables, which have a value of one whenever a position has been visited by one
of the agents and zero otherwise. In order to also assure that the agent is aware
of its current position in the game, we supply another 10 x 10 grid in which the
current position of the agent is equal to one. Finally, a 10 x 10 grid is used in
which the head of the opponent has a value of one. Therefore, this representation
consists of 300 input units.

In our previous work [7], we compared the use of this full-grid information
method to the use of local vision grids. The results indicated that using vision
grids is a very useful method to obtain information about the relevant parts of
the environment and attain high performance scores. A vision grid can be seen as

8 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

a local view of the environment taken from the position of the agent. This vision
grid is a square rectangle with an uneven dimension. We used two different grid
sizes: a small vision grid with an area of 3 x 3 and a large vision grid with a size
of 5 x 5. To get all important information from the player and the opponent, 7
different vision grids are combined (in all these grids the standard value is zero):

— The player trail grid contains information about the locations visited by the
agent itself: whenever the agent has visited the location it will have a value
of one instead of zero.

— The player’s opponent-trail grid contains information about the locations
visited by the opponent: if the opponent or its tail is in the ’visual field’ of
the agent these locations are encoded with a one.

— The player’s wall grid represents the walls: whenever the agent is close to a
wall the wall locations will get a value of one.

— The player’s opponent-head grid contains information about the current lo-
cation of the head of the opponent. If the opponent’s head is in the agent’s
visual field, this location will be encoded with a one.

— The opponent wall grid represents the walls for the opponent: whenever the
opponent is close to a wall the wall locations will get a value of one.

— The opponent-trail grid contains information about the locations visited by
the opponent: whenever the opponent has visited the location it will have a
value of one instead of zero.

— The opponent’s player grid encodes the locations visited by the player seen
from the perspective of the opponent: if the player or its trail is in the 'visual
field’ of the opponent these locations are encoded with a one.

Because 7 vision grids are used, the total number of inputs for the small vision
grid is 63 and for the large vision grid it is 175. This shows that the dimensionality
of the input space is significantly reduced when using vision grids when compared
to the full grid that used 300 inputs. An example game state and the seven
associated (small) vision grids can be found in Figure

2.4 Opponent Modelling and Monte Carlo Rollouts

The main contribution of our previous paper [7] was a novel opponent modelling
technique, which allows an agent to learn a model of the opponent while at the
same time learning to play the game. This learned opponent model was then
used in Monte Carlo rollouts to select moves during the final test games.

In opponent modelling the task is to learn the opponent’s behaviour in dif-
ferent states to predict what the opponent’s next action will be. Opponent mod-
elling techniques have mainly focused on imperfect information games [I9I5] and
are relatively problem specific. Our technique focuses on games in which the op-
ponent’s behaviour is fully observable. In our opponent modelling technique the
agent learns a model of the opponent by learning to predict the opponent’s
next move using the same MLP as is used to learn to play the game. A possi-
ble benefit of incorporating opponent modelling in the same neural network is

Learning with Opponent Models for Playing Tron 9

@ Player head Player grid Player grid
Player tail ololo ololo
@ Opponent head 0/1/1 o/l1/0
@ Opponent tail 0lol1 0l1/0
Wall grid Wall grid

1111 1111

o8 0/0|0 0(0f0
0|00 0|00
Opponent grid Opponent grid

0o/ofo 0o/o|o

110/0 0/0(1

1100 0j0jo0

Head grid

0o/o|o

0/0(1

0(0]0

Fig. 2. An illustration of a game state and the associated values in the 7 vision grids.

that the agent might learn hidden features regarding the opponent’s behaviour,
which could increase performance. The fact that the model can be learned using
the same network and the backpropagation algorithm [I2] is a reason that the
method is widely applicable, as one only needs to slightly change the structure
of the neural network. In fact, this opponent modelling technique can be used
in many games in which the opponent’s actions are observable. Another benefit
of this technique is that the agent simultaneously learns a policy and a model of
the opponent and no extra training phase is needed.

After the training phase has finished the agent’s model of the opponent is
reflected as a probability distribution over the opponent’s next moves given
the current state. This probability distribution can then be used in planning
algorithms such as Monte Carlo rollouts.

In order to incorporate the opponent modelling technique we need to alter
the structure of the neural network used. For this, we add four (as the action
space consists of four actions) output units to the network, in which we will use
a softmax activation function. By doing so, the output of these added nodes
represent the probability distribution over the opponent’s next action given the
current game state. The softmax function is used to transform the vector o
containing the output modelling values for the next K = 4 possible actions of
the opponent to values in the range [0, 1] that add up to one:

e
K
Zk:l €%k

After training these four output nodes with backpropagation, the output of each
of these nodes represents the probability of the opponent conducting action o;

P(st,0;) = (9)

10 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

in state s;. When training the additional output nodes with backpropagation,
we compute a target vector for the four output nodes. The target is one for
the action conducted by the opponent and zero for all other actions given the
previous game state. Whenever an agent follows a fully deterministic policy,
this technique would allow the agent to learn to correctly predict all of the
opponent’s moves. Although in reality a policy is seldom entirely deterministic,
players use certain rules to play a game and the agent can learn these rules with
this opponent modelling technique.

So far we have explained how this opponent modelling technique can be in-
corporated in the neural network that is combined with Q-learning. In order to
increase the performance of the agent, we can use the learned opponent model in
a planning algorithm. In this research we will use the model in so-called Monte
Carlo rollouts [23]. Such a rollout is used to estimate the value Qgim/(s,a), the
expected Q-value of performing action a in state s and subsequently performing
the action suggested by the current policy for n steps. This simulated Q-value is
estimated by simulating the game ahead using the opponent model to determine
the opponent’s moves in this simulation. The number of rollouts to determine
Qsim(8,a) can vary and this determines how the opponent’s action is selected.
If one rollout is used the opponent’s move with the highest probability is carried
out. When more than one rollout is performed, the opponent’s action is selected
based on the probability distribution. For every game state we can use a vari-
able amount of rollouts m with a horizon or length of n actions to determine
the expected or simulated Q-value of performing all actions in the given game
state. Whenever more than one rollout is used (m > 1) we average the obtained
simulated Q-values per action. R

If a game ends before the horizon is reached, the simulated Q-value Qsim (st, at)
for a single rollout equals the reward obtained in the simulated game (1 for win-
ning, 0 for a draw, and -1 for losing) properly discounted by the number of moves
¢ until an end state is reached:

Quim (56, 1) = 7' (10)

If the game is not finished before reaching the rollout horizon the simulated Q-
value is equal to the discounted Q-value of the last (greedy) action performed:

@sim(staat) = ’Vn@(st+n7at+n) (11)

See Algorithm 1 for a detailed description. This kind of rollout is also called a
truncated rollout as the game is not necessarily played to its conclusion [23]. In
order to determine the importance of the number of rollouts m and the length
of the horizon n, we will perform different experiments with different amounts
of rollouts and lengths of the horizon.

3 Learning from Monte Carlo Rollouts

In our previous paper [7], Monte Carlo rollouts using the model of the opponent
were used to determine the optimal move given the current game state but they

Learning with Opponent Models for Playing Tron 11

Algorithm 1 Monte Carlo rollout with Opponent Model (taken from [7])

Input: Current game state s, starting action a¢, horizon N, number of rollouts M
Output: Average utility of performing action a; at time ¢ and subsequently following
the policy over M rollouts
for m=1,2,..M do

i=0
Perform starting action a;
if M =1 then

ot < argmazoP(st,0)
else if M > 1 then
o+ < sample P(s¢,0)
end if
Perform opponent action o
Determine reward r:4;
rollout Reward,, = Ti+i
while not game over do
t=1+1
At4i < argmazqQ(si+i, a)
Perform action a;4;
if M =1 then
Ot+i < argmazxoP(si+i,0)
else if M > 1 then
0t+i < sample P(S¢y:,0)
end if
Perform opponent action o;4;
Determine reward r:4;
if Game over then
rollout Reward,, = 'Yirt+i
end if
if not Game over and ¢ = N then
game over < True
rollout Reward,, = ’yNQ(sN, an)
end if
end while
rewardSum = rewardSum + rollout Reward,,
m=m+1
end for
return rewardSum/M

12 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

were only used in testing the final performances of the different systems. In this
paper, we investigate whether it is beneficial to learn from the action estimates
that are gathered in the rollouts while playing the game. In our novel approach,
Monte Carlo rollouts will be used while training the RL system in two ways: for
selecting actions in a game state while trainingand for computing target Q-values
in a game-state. Because using rollouts to select an action requires significantly
more computations, we will combine this method with experience replay [9].
This could allow the agent to use significantly fewer training games to attain the
same performances as in our previous paper. For learning from the Monte Carlo
rollouts, the target values of the Q-values have to be adapted. With Q-learning
the target is determined by the following formula:

@\target(st’ at) —r+ ’ymgx Q\(st+la a) (12)

Now, we will use the action estimates obtained with the rollouts as targets, as
they arguably reflect the expected future reward of performing an action more
accurately. If a game finishes during a rollout, the target is equal to the reward
obtained in the simulated game (1 for winning, 0 for a draw, and -1 for losing)
with appropriate discounting using the length ¢ of the current rollout:

@target(st’ at) _ 'Yirt—i-i (13)

If the game is not finished before reaching the rollout horizon, the target Q-value
is equal to the discounted Q-value of the last (greedy) action performed:

@target(st’ at) _ 7"@(5t+n7 at-l—n) (14)

where n is the length of the horizon as before. Note that these targets are related
to n-step backups [2I], but here we use simulated experiences instead of real
experiences. If multiple rollouts are used for selecting an action, these target
values are averaged over all rollouts.

An interesting advantage of using the model of the game and the learned
model of the opponent, is that estimates are collected for all actions. Therefore,
instead of only training on the target of the selected action, it is also possible to
train the multi-layer perceptron on estimates of all four actions obtained through
the rollouts. Note that this is only possible because we have a model of the game
and learn the model of the opponent, and this is quite different from most RL
algorithms that only learn from the experience obtained with a single action:
(St, Aty Tt, St+1).

Experience replay does not only increase sample efficiency, in some cases it
is needed to ensure stability (convergence to an optimal policy) in the learning
process [3]. At first we implemented rollout learning without experience replay
and experienced extreme difficulties when training the agents online in the roll-
outs, as the Q-values often exploded. This was caused by the fact that the
back-propagation algorithm [25] assumes that training samples are independent.
However, with online learning in the rollouts a lot of experiences are collected

Learning with Opponent Models for Playing Tron 13

which were not independent as they were gathered sequentially. This is another
reason why we used experience replay.

The implementation works as follows: at every state s; we store the current
game state s, the action performed a;, the opponent’s action o; and the target
Q-value computed with equations 13 or 14, in the replay memory. We will let the
system play 50 games (collecting around 1000 experiences in the replay memory),
and we randomly select experiences from this pool to train on. The target values
of the experiences are given by the multi-layer perceptron or the rewards during
the rollouts as explained before. In case multiple rollouts are used, the targets
are averages of the different rollout estimates. In total, we use 10 times the size of
the replay memory to draw random experiences and train the MLP. Afterwards,
the replay memory is emptied and the new MLP is used to play again 50 games
and so on.

4 Experiments and Results

Previous results [7] showed that vision grids increase performance in most cases,
as compared to using the full grid as state representation. Furthermore, that
research showed that the Elu activation function outperforms the Sigmoid ac-
tivation function. In the experiments conducted in our previous research the
number of training games was set to 1.5 million. Their results are shown in
subsections 4.1 to 4.3. In the new experiments, shown in subsections 4.4 to
4.6, 150,000 training games are used. The agent plays against the random and
semi-deterministic opponent and the number of test games is equal to 10,000.
In these test games, the agent makes no exploration actions. In order to obtain
meaningful results, all experiments are conducted ten times. The performance is
measured as the number of games won plus 0.5 times the number of games tied.
This number is divided by the number of games to get a score between 0 and
1. In all experiments we use an MLP with the weights initialised between —0.5
and 0.5. In all experiments we use one hidden layer, as preliminary experiments
indicated that this led to the best results. The state representation technique
determines the number of input nodes and the number of hidden nodes varies
from 200 to 400.

4.1 Learning without Monte Carlo Rollouts

We performed many preliminary experiments to tune all hyperparameters. In
these experiments concerning Q-learning without Monte Carlo rollouts, the num-
ber of input/hidden nodes are equal to 300/300, 175/400, and 63/200 for the full
grid, large vision grids, and small vision grids respectively. In all experiments the
MLP has eight output nodes, which represent the four Q-values for the differ-
ent actions and the four outputs to model the opponent’s probability of selecting
that action. In all experiments e-greedy exploration is used. In most experiments
the exploration rate e decreases over the first 750,000 games from 10% to 0%.

14 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

The exception to this rule is that with large vision grids and the sigmoid ac-
tivation function against the random opponent, the exploration rate decreases
from 10% to 0% over the first million games. The learning rate a and discount
factor v are 0.005 and 0.95 respectively. The learning rate is 0.001 when using
the full grid as state representation with the sigmoid activation function and set
to 0.0025 with large vision grids and the sigmoid activation function against the
random opponent. These changes were made to assure stable results. We note
that in this experiment no rollouts are performed. Figures and [5] show the
training performance for the three different state representations. Table [1| shows
the performance over the final 10,000 test games.

4 ODTraining performance small vision grids opponent modelling 1 OGTraining performance large vision grids opponent modelling

.75 ———

o

75

)

©

.50

©

50

Performance score
Performance score

o

25

1)

1251

Random_Sigmoid | Random_Sigmoid

— Random_Elu — Random_Elu

—— Deterministic_Sigmoid —— Deterministic_Sigmoid
Deterministic_Elu Deterministic_Elu

150 150

50 100 50 100
Games played x10* Games played x10*

Fig.3. Final performance score for
small vision grids as state representa-
tion over 1.5 million training games
with opponent modelling but without
rollouts (taken from [7]).

Fig. 4. Final performance score for
large vision grids as state representa-
tion over 1.5 million training games
with opponent modelling but without
rollouts (taken from [7]).

The results show that the large vision grids with the Elu activation function
obtain the best results against the two opponents. The worst results are obtained
with the full-grid representation, which may need even more than 1.5 million
training games to obtain good performances.

Table 1. Final performance score and standard errors with opponent modelling with-
out rollouts.

State representation Opponent Sigmoid Elu

Small vision grids Random 0.67 (0.004) 0.67 (0.009)
Large vision grids Random 0.72 (0.005) 0.79 (0.003)
Full grid Random 0.42 (0.016) 0.40 (0.025)
Small vision grids Deterministic 0.57 (0.015) 0.69 (0.005)
Large vision grids Deterministic 0.63 (0.019) 0.90 (0.003)
Full grid Deterministic 0.32 (0.023) 0.62 (0.015)

Learning with Opponent Models for Playing Tron 15

Training performance full grid opponent modelling

e
)
a

e
o
=]

Performance score

o

N

o
\

\

- . Random_Sigmoid
— —— Random_Elu
—— Deterministic_Sigmoid
Deterministic_Elu

50 100 150
Games played x10*

Fig. 5. Final performance score for the full grid as state representation over 1.5 million
training games with opponent modelling but without rollouts (taken from [7]).

Although in these experiments, a model of the opponent is learned by the
MLP at the same time as the Q-value function, the opponent model is not
used during game play. Therefore, the only reason this might be beneficial is as
having an auxiliary task while training the MLP. We therefore performed another
experiment, where the MLP is not updated on the actions of the opponent and
therefore does not learn an opponent model. Using the same setup as before,
results of 10 simulations with 10,000 final test games were generated that can
be found in Table 2L

Table 2. Final performance score and standard errors with the Elu activation function
and opponent vision grids, but without opponent modelling (taken from [7]).

State representation Random Deterministic
Small vision grids 0.69 (0.008) 0.69 (0.003)
Large vision grids 0.82 (0.009) 0.89 (0.003)

From these results we can conclude that the agent did not profit from learning
an opponent model as there is no clear improvement when we compare Table
to Table[2] The benefit of learning the opponent model is therefore researched in
the next subsections, in which Monte Carlo rollouts are used that make use of the
model of the game and the opponent model to generate simulated experiences
before selecting an action.

4.2 Learning with Opponent Modelling and Monte Carlo Rollouts

By letting the agent learn a model of the opponent, this model can be used in
Monte Carlo rollouts. The rollouts in this subsection are only used for selecting
actions during the final test games. Here, the game is simulated ten steps into
the future, as this was found to be the optimal amount of actions in the trade-off

16 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

between looking far into the future and assuring that the predicted actions are
correct in this rollout. In order to test the effect of the amount of rollouts per
state action pair, we compare the agent’s performance when one and ten rollouts
are conducted. Since the opponent’s actions within the rollouts are determined by
the learned probability distribution, we plot the prediction accuracy of the agent
against both opponents in Figure [6] and [7] for the first 25,000 training games.
These figures show that with the Elu activation function, which learns slightly
faster than the sigmoid activation function, the agent correctly predicts 50%
of the random opponent’s moves and 90% of the semi-deterministic opponent’s
moves when we use vision grids. When the full grid is used, this accuracy is 40%

and 80% respectively.

Prediction against random opponent

o
a
3

3

A s ==

% correct predicted

Small_VG

— Large_VG

Full_Grid

50 100 150 200 250
Games played x100

Fig. 6. Percentage of moves correctly
predicted against the random opponent
(taken from [7]).

100 Prediction against semi-deterministic opponent

o o
@ S
S a

% correct predicted

o
o
&

Small_VG

— Large_VG

Full_Grid

50 100 150 200 250
Games played x100

Fig.7. Percentage of moves cor-
rectly predicted against the semi-
deterministic opponent (taken from [7])

Table 3. Final performance score and standard errors with one rollout and a horizon

of ten actions.

State representation Opponent

Sigmoid Elu

Small vision grids Random 0.83 (0.002) 0.84 (0.003)
Large vision grids Random 0.66 (0.008) 0.66 (0.004)
Full grid Random 0.65 (0.004) 0.72 (0.007)
Small vision grids Deterministic 0.93 (0.002) 0.96 (0.001)
Large vision grids ~ Deterministic 0.95 (0.002) 0.98 (0.001)
Full grid Deterministic 0.54 (0.010) 0.75 (0.010)

Now we turn to the agent’s performance in 10,000 test games when using
the rollouts after the agent was trained for 1.5 million games as before. The per-
formance score and standard error using one rollout with a horizon of ten steps
during 10,000 test games can be found in Table 3] From the results we can con-

Learning with Opponent Models for Playing Tron 17

clude that Monte Carlo rollouts increase the agent’s performance in all scenarios,
except for when large vision grids are used against the random opponent. A very
high performance score of 0.98 is obtained using large vision grids and the Elu
activation function against the semi-deterministic opponent, which shows that
using this technique performance can be increased significantly. This increase is
especially large when we use vision grids and play against the semi-deterministic
opponent. When the opponent employs the collision-avoiding random policy,
small vision grids lead to the highest performance and when comparing these re-
sults to the previous experiments we see that Monte Carlo rollouts also increase
performance against the random opponent. This shows that although the policy
of the opponent is far from deterministic, opponent modelling still significantly
increases performance from 0.67 to 0.83 with the sigmoid activation function
and from 0.67 to 0.84 with the Elu activation function when small vision grids
are used as state representation.

After applying one rollout for each action in a given state, we also tested
whether increasing the number of rollouts to ten would affect the agent’s perfor-
mance. The results are displayed in Table 4] We find one noteworthy difference
in the agent’s performance when using one or ten rollouts. The agent’s perfor-
mance against the random opponent considerably increases when we use ten
instead of one rollout. Against the semi-deterministic opponent, increasing the
number of rollouts has no noticeable effect. This is because the agent predicts
the semi-deterministic opponent correctly in over 90% of the cases, causing the
advantage of action sampling and multiple rollouts to be absent.

Table 4. Final performance score and standard errors with ten rollouts and a horizon
of ten actions.

State representation Opponent Sigmoid Elu

Small vision grids Random 0.84 (0.016) 0.88 (0.001)
Large vision grids Random 0.90 (0.001) 0.91 (0.001)
Full grid Random 0.72 (0.008) 0.74 (0.009)
)
)
)

Small vision grids Deterministic 0.93 (0.002) 0.96 (0.001)
Large vision grids Deterministic 0.96 (0.002) 0.98 (0.001)
Full grid Deterministic 0.55 (0.008) 0.78 (0.010)

4.3 Monte Carlo Rollouts without using the Learned Opponent
Model

We observed that the agent’s performance significantly increases when we use
Monte Carlo rollouts. It is however not certain that without the opponent model
but with Monte Carlo rollouts this performance would be lower. Therefore, we
test the agent’s performance when the moves in the rollouts are determined
randomly instead of by the opponent model. The results of these experiments
can be found in Table[5| The relatively low performance scores indicate that it is
indeed the model of the opponent that increases the agent’s performance when

18 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

rollouts are used. Without a good opponent model, the results of Monte Carlo
rollouts cannot be trusted for selecting an action, because the generated rollouts
are not similar to how the game would actually be played.

Table 5. Final performance score and standard errors with one rollout and a horizon
of ten actions without using the learned model of the opponent.

State representation Opponent Sigmoid Elu

Small vision grids Random 0.46 (0.007) 0.50 (0.001)

Large vision grids Random 0.50 (0.001) 0.51 (0.002)

Full grid Random 0.37 (0.010) 0.35 (0.006)

Small vision grids Deterministic 0.34 (0.003) 0.35 (0.001)
))
))

Large vision grids Deterministic 0.35 (0.001) 0.36 (0.001
Full grid Deterministic 0.21 (0.007) 0.21 (0.005

4.4 Learning from Monte Carlo Rollouts

In this subsection, we will experiment with learning from the rollout estimates
and lower the amount of training games to only 150,000. This can be done by
either learning the Q-value of a single performed action using its rollout estimate
or by updating the Q-values of all four actions simultaneously.

For this experiment the agent first plays 100,000 games without Monte Carlo
rollouts and learns in an online manner as before. Afterwards, Monte Carlo
rollouts are used for 50,000 training games in which the Q-values of the MLP
are trained on the rollouts estimates (while the MLP is still trained on actions
of the opponent). We want to note that during these 50,000 games experience
replay is used, as explained in Section 3. Exploration decreases linearly from
10% to 0% over the first 100,000 games and the MLP now uses 400 hidden units
for both the small and large vision grids. The learning rate is still set to 0.005
both for the initial 100,000 training games with online learning and for the later
50,000 training games where experience replay on the rollout estimates is used.

We again trained and tested against two opponents, but this time only using
the Elu activation function and vision grids. We also compare the use of one
rollout with a horizon of ten actions and five rollouts with a horizon of five
actions. The previous results have shown that the first works better against
the deterministic opponent, while the latter works better against the random
opponent. We did not use 10 rollouts with a horizon of 10 actions, since such
experiments are computationally very expensive. An experiment with the large
vision grids and 5 rollouts with a horizon of 5 actions already took around 10
hours to complete on our CPUs. Note that all experiments have been conducted
ten times to obtain meaningful results. The training performance against both
opponents when learning only on the estimates of one action (the selected action)
can be found in Figures [§ and 0] and the performance score over the 10,000 final
test games can be found in Table [6]

Learning with Opponent Models for Playing Tron 19

100 Learning 1 action in rollouts with small vision grids o Learning 1 action in rollouts with large vision grids
|
1
0075 \ 0075
s w s
g A g e
8 g SRS 8 PSR
5050 ~ o 050 S
g o g .
kel - kel
5 p 5
[« / o
0.25(/ 0251/
/ Random_10 Yoy Random_10
| — Deterministic_10 | 7 — Deterministic_10
/ — Random_5 — Random_5
Deterministic_5 / Deterministic_5
50 100 150 50 100 150
Games played ~ x1000 Games played ~ x1000
Fig.8. Training performance with Fig. 9. Training performance with
small vision grids when updating the large vision grids when updating the
Q-value of a single action. Random Q-value of a single action. Random
and deterministic indicate the oppo- and deterministic indicate the oppo-
nent and 5 and 10 represent the hori- nent and 5 and 10 represent the hori-
zon. zon.

Table 6. Final test performance for 10,000 games while training the Q-value of the
single performed action on its rollout estimate.

State representation Opponent 1 Rollout 10 Actions 5 Rollouts 5 Actions

Small vision grids _ Random _ 0.45 (0.005) 0.58 (0.006)
Large vision grids Random 0.43 (0.006) 0.58 (0.010)
Small vision grids Deterministic 0.55 (0.006) 0.57 (0.007)
Large vision grids Deterministic 0.54 (0.005) 0.59 (0.008)

From the results we can conclude that when we update the Q-value of the
single performed action, learning from the rollout estimates hinders performance.
The peaks in figures[§and [0 are caused by the onset of using Monte Carlo rollouts
for selecting actions after 100,000 games. The system’s learning dynamics seem
unstable and therefore the performance immediately drops with a large amount.

As mentioned in Section 3, the targets are determined by the simulated Q-
values computed with the rollouts. However, since we determine a target for
every possible action, it is possible to apply back-propagation on all four Q-
values rather than only for the Q-value of the performed action. We believe
that by updating the Q-values of all four actions, the agent can faster learn the
correct Q-values and that this therefore should increase performance. We have
conducted the same experiment as above, but now by updating the Q-values of
all four actions using the rollout estimates. The results of training using small

20 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

and large vision grids can be found in Figures[I0] and [II} The performance over
the test games can be found in Table [7]

Learning 4 actions in rollouts with small vision grids Learning 4 actions in rollouts with large vision grids

1.00

Performance score
&
3
|
Y

Random_10

—— Deterministic_10

— Random_5

Deterministic_5

© ©

Performance score

)

50 100
Games played ~ x1000

150

75

50

25

Random_10

— Deterministic_10

— Random_5
Deterministic_5

50 100 150
Games played ~ x1000

Fig.11. Training performance with
large vision grids when updating the Q-
values of all actions. Random and de-
terministic indicate the opponent and
5 and 10 represent the horizon.

Fig.10. Training performance with
small vision grids when updating the
Q-values of all actions. Random and
deterministic indicate the opponent
and 5 and 10 represent the horizon.

Table 7. Final test performance for 10,000 games while training Q-values of 4 actions
using the rollout estimates.

State representation Opponent 1 Rollout 10 Actions 5 Rollouts 5 Actions

Small vision grids Random 0.74 (0.002) 0.82 (0.001)
Large vision grids Random 0.74 (0.002) 0.84 (0.002)
Small vision grids Deterministic 0.94 (0.001) 0.88 (0.002)
Large vision grids ~ Deterministic 0.96 (0.001) 0.93 (0.001)

If we compare the results from training one action and training four actions,
we can conclude that it is very beneficial to train four actions simultaneously,
rather than only learning the Q-value of the performed action. Now we also
see in the figures that the agent’s performance increases over the last 50,000
games but only against the deterministic opponent. This is most likely caused
by the fact that the opponent model against this opponent is more accurate and
therefore leads to more accurate targets in the rollouts. In addition, when we
compare these results with the results after 1.5 million games in Table [3] where
we also used one rollout with ten actions, we see that the results are slightly
worse against the deterministic opponent. Against the random opponent the
performance increases with large vision grids, but decreases with small vision
grids. These results show that with the new proposed system good performances
can already be obtained with 150,000 training games. From the results shown

Learning with Opponent Models for Playing Tron 21

in Table [7l we can also conclude that it is better to use a horizon of 10 actions
against the semi-deterministic opponent.

4.5 Learning from Monte Carlo Rollouts with Exploration

In the previous experiments, during the rollout learning phase no exploration
was used. In this subsection, we want to explore if it would not be better to
sometimes use an exploration action instead of the action proposed by the Monte
Carlo rollouts. Therefore, we conducted the same experiments as in the previous
section, however, now exploration decreases from 10% to 0% over the first 100,000
games and goes from 10% to 0% over the 50,000 games played using the rollouts.
The training performances can be found in Figures [12] [I3] [[4} and [I5] The
performance over the test games can be found in Tables [§ and [9]

, (IJ_cearning 1 action in rollouts with exploration and small grids

)
S
>

Performance score
&
3

)
ju
a

Performance score
°
o
3

; cI_earning 1 action in rollouts with exploration and large grids

o
N
3

[/ Random_10
/ — Deterministic_10
— Random_5
Deterministic_5

50 100 150
Games played ~ x1000

Fig.12. Training performance with
small vision grids and exploration in
the rollouts when updating only the Q-
value of 1 action. Random and deter-
ministic indicate the opponent and 5
and 10 represent the horizon.

1)
o
3

/[7 Random_10
/ — Deterministic_10
— Random_5
Deterministic_5

50 100 150
Games played ~ x1000

Fig.13. Training performance with
large vision grids and exploration in
the rollouts when updating only the Q-
value of 1 action. Random and deter-
ministic indicate the opponent and 5
and 10 represent the horizon.

Table 8. Final test performance for 10,000 games while learning the Q-value of 1
action from the rollout estimates with exploration during the rollout training phase.

State representation Opponent

1 Rollout 10 Actions

5 Rollouts 5 Actions

Small vision grids Random 0.47 (0.003) 0.59 (0.011)
Large vision grids Random 0.43 (0.006) 0.59 (0.006)
Small vision grids ~ Deterministic 0.63 (0.020) 0.60 (0.014)
Large vision grids Deterministic 0.62 (0.011) 0.65 (0.009)

22

Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

‘Iagarn'\ng 4 actions in rollouts with exploration and small grids

Performance score

Random_10
— Deterministic_10
— Random_5
Deterministic_5

50 100 150
Games played ~ x1000

Fig. 14. Training performance with
small vision grids and exploration in
the rollouts when updating the Q-
values of 4 actions. Random and de-
terministic indicate the opponent and
5 and 10 represent the horizon.

, Iaearning 4 actions in rollouts with exploration and large grids

© =)
@ 5
3 a
¢
\
.
.

Performance score
Y

o
N
X

Random_10
— Deterministic_10
— Random_5
Deterministic_5

50 100 150
Games played ~ x1000

Fig.15. Training performance with
large vision grids and exploration in the
rollouts when updating the Q-values of
4 actions. Random and deterministic
indicate the opponent and 5 and 10
represent the horizon.

Table 9. Final test performance for 10,000 games while learning the Q-values of 4
actions from the rollout estimates with exploration during the rollout training phase.

State representation Opponent

1 Rollout 10 Actions

5 Rollouts 5 Actions

Small vision grids _Random _ 0.73 (0.002) 0.83 (0.002)
Large vision grids Random 0.74 (0.002) 0.84 (0.002)
Small vision grids Deterministic 0.94 (0.001) 0.87 (0.004)
Large vision grids ~ Deterministic 0.96 (0.001) 0.93 (0.002)

From the figures it becomes clear that exploration over the last 50,000 games
first leads to a drop in performance, while afterwards the performance increases
strongly. When we compare the results from learning in rollouts with exploration
and without exploration, we see that exploration increases performance when we
train one action while using the large vision grid. When learning the Q-values of
four actions simultaneously, there is no benefit of exploration. This is most likely
due to the fact that with learning four actions the agent learns better Q-values
for the actions it does not conduct, which reduces the benefit of exploration.

4.6 Using Experience Replay with 1-step Rollouts

In order to determine the importance of using long horizons in the rollouts, we
conducted experiments in which the agent uses experience replay but only used a
rollout with 1 action. Therefore the horizon in the rollouts is reduced to 1 action,

Learning with Opponent Models for Playing Tron 23

where the agent tries all possible actions and the model of the opponent is used
to predict the next state. In these experiments we only perform one rollout per
state during training. When playing the final test games, the agent still uses
1 rollout with a horizon of 10 actions. The exploration strategy and all other
hyperparameters are the same as before. The results can be found in Table

Table 10. Final test performance for 10,000 games with 1-step rollouts

State representation Opponent 4 actions 1 action

Small vision grids Random 0.73 (0.003) 0.47 (0.008
Large vision grids Random 0.73 (0.001) 0.46 (0.012
Small vision grids Deterministic 0.94 (0.001) 0.65 (0.007
Large vision grids Deterministic 0.95 (0.001) 0.65 (0.013

AN AN

When we compare Table to Tables [§ and [9] with 1 rollout, we notice
no significant differences. Therefore, we can conclude that learning from the
estimates of long rollouts is not necessary and actually costs more computing
power. This is similar to learning from n-step backups [21I] which can lead to a
lower bias but suffers from a higher variance and is therefore not always fruitful.

Learning on the estimates of all actions using the Monte Carlo rollouts is
however always much better than learning only on the estimate of a single action.
Experience replay is general is always used to update the Q-value of a single
action, because that action was the only one that was experienced in a state.
However, with the model of the game and the opponent model, we have shown
that experience replay can be improved by updating the Q-values of all actions
simultaneously. This led to similar results as in our previous paper [7], but now
by only learning from 150,000 games instead of from 1.5 million games.

5 Conclusion

This paper described a novel approach to learning to play the game of Tron.
The proposed method combines reinforcement learning, multi-layer perceptrons,
vision grids, opponent modelling and Monte Carlo rollouts in a novel way. Instead
of only using Monte Carlo rollouts while playing test games, the new system uses
Monte Carlo rollouts to select moves while training and learns from the estimates
obtained with the Monte Carlo rollouts. We have extended the use of experience
replay to make it possible to update the state-action values of all actions in
a state simultaneously. This is possible due to the Monte Carlo rollouts that
generate action estimates for all actions.

The results showed that the use of the novel experience replay method that
updates all action values simultaneously strongly outperforms experience replay
where only the performed action gets its action value updated. One reason is
that experience replay on a single selected action requires a lot of exploration to
compare the utilities of different actions in the same state. Furthermore, with

24 Stefan J.L. Knegt, Madalina M. Drugan, and Marco A. Wiering

the new method all action values are updated in the same state. The proposed
system is able to perform similarly after training on 150,000 games to our pre-
vious system [7], which needed 1.5 million training games to obtain very good
performances. The results also showed that while training the system, longer
horizons in the Monte Carlo rollouts were not necessary to obtain good results,
as with a horizon of a single action similar performances were obtained. Learn-
ing from longer horizons may reduce the bias due to bootstrapping, but also
suffers from a higher variance. Against the semi-deterministic opponent the RL
system profits from Monte Carlo rollouts with longer horizons, whereas against
the random opponent the system profits from multiple rollouts.

This research opens up several interesting possibilities for future research.
Instead of Monte Carlo rollouts, it would be interesting to also combine Monte
Carlo tree search with opponent-model learning. Furthermore, from the different
rollouts much more information is obtained than currently used for updating
the state-action value function. It would be possible to update action values of
each game state that was visited during one of the rollouts. Another direction
is to combine the power of the vision grids with convolutional neural networks
(CNNs). The vision grids summarize the most important local information, but
lack more global information. By combining the vision grids with CNNs it should
be possible to profit from the faster learning process using the local information,
while still being able to integrate important global information. Finally, it would
be interesting to examine if our extended experience replay algorithm that trains
on simulated experiences of all actions in a given state would also be useful for
learning to play other games.

References

1. Baxter, J., Tridgell, A., Weaver, L.: Learning to play chess using temporal differ-
ences. Machine Learning 40(3), 243-263 (2000)

2. Bom, L., Henken, R., Wiering, M.: Reinforcement learning to train Ms. Pac-Man
using higher-order action-relative inputs. In: 2013 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL). pp. 156-163 (2013)

3. de Bruin, T., Kober, J., Tuyls, K., Babuska, R.: The importance of experience re-
play database composition in deep reinforcement learning. In: Deep Reinforcement
Learning Workshop, NIPS (2015)

4. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by exponential linear units (elus). CoRR abs/1511.07289 (2015)

5. Ganzfried, S., Sandholm, T.: Game theory-based opponent modeling in large
imperfect-information games. In: the 10th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2. pp. 533-540. International
Foundation for Autonomous Agents and Multiagent Systems (2011)

6. He, H., Boyd-Graber, J.L., Kwok, K., III, H.D.: Opponent modeling in deep rein-
forcement learning. CoRR abs/1609.05559 (2016)

7. Knegt, S., Drugan, M., Wiering, M.: Opponent modelling in the game of Tron
using reinforcement learning. In: ICAART 2018: 10th International Conference on
Agents and Artificial Intelligence. pp. 29-40 (2018)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Learning with Opponent Models for Playing Tron 25

Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. In: Fiirnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) Machine Learning: ECML 2006. pp. 282-293.
Springer Berlin Heidelberg (2006)

Lin, L.J.: Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh (January 1993)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision pro-
cesses. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State-of-
the-Art, pp. 3-42. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Parallel Distributed Processing, vol. 1, pp. 318-362. MIT
Press (1986)

Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM
Journal on Research and Development 3, 210-229 (1959)

Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks
61, 85-117 (2015)

Shantia, A., Begue, E., Wiering, M.: Connectionist reinforcement learning for in-
telligent unit micro management in Starcraft. In: Neural Networks (IJCNN), The
2011 International Joint Conference on. pp. 1794-1801. IEEE (2011)

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, 1., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484-489 (2016)

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis,
D.: Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv preprint arXiv:1712.01815 (2017)

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of go
without human knowledge. Nature 550, 354 (Oct 2017)

Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N., Billings, D., Rayner,
C.: Bayes bluff: Opponent modelling in poker. In: Proceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence (UAI). pp. 550-558 (2005)
Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine
Learning 3(1), 9-44 (1988)

Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edn. (1998)

Tesauro, G.: Temporal difference learning and TD-gammon. Commun. ACM 38(3),
58-68 (1995)

Tesauro, G., Galperin, G.R.: On-line policy improvement using Monte-Carlo
search. In: Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Pro-
cessing Systems 9, pp. 1068-1074. MIT Press (1997)

Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279-292 (1992)
Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph.D. thesis, Harvard University (1974)

	Learning from Monte Carlo Rollouts with Opponent Models for Playing Tron

