Dynamical simulations of electronically induced solid-solid phase transformations in tungsten Samuel T. Murphy, ^{1, a)} Szymon L. Daraszewicz, ¹ Yvelin Giret, ¹ Matthew Watkins, ^{1, 2} Alexander L. Shluger, ¹ Katsumi Tanimura, ³ and Dorothy M. Duffy¹ ¹⁾Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London, UK ²⁾School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK 3) The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan (Dated: 25 October 2015) The rearrangement of a material's electron density during laser irradiation leads to modified non-thermal forces on the atoms that may lead to coherent atomic motions and structural phase transformations on very short timescales. We present *ab initio* molecular dynamics simulations of a martensitic solid-solid phase transformation in tungsten under conditions of strong electronic excitation. The transformation is ultrafast, taking just over a picosecond, and follows the tetragonal Bain path. To examine whether a solid-solid bcc-fcc phase transformation could occur during laser irradiation, we use two-temperature molecular dynamics (2T-MD) simulations with a specially developed potential dependent on the electronic temperature. Our simulations show that the occurrence of the solid-solid phase transformation is in competition with ultrafast non-thermally assisted melting with the strength of the electron-phonon coupling determining the lifetime of the new solid phase. In tungsten the melting transition is predicted to occur too rapidly for the fcc phase to be detectable during laser irradiation. #### I. INTRODUCTION Structural phase transitions in materials induced by femtosecond laser pulses are of great interest from a fundamental physics perspective as well as for a number of applications. Ultrafast irradiation of a metallic sample promotes electrons from their ground state into some excited states. Following absorption of the laser energy the electronic energy distribution tends towards a Fermi-Dirac distribution, defined by an electronic temperature, T_e , through electron-electron collisions. The rate of electron thermalisation in metals is rapid (10-100 fs) relative to the rate at which energy is transferred to the ions, via electron-phonon coupling¹. Therefore, the system enters a transient, non-equilibrium state where $T_e >> T_i$ (where T_i is the ionic temperature) sometimes referred to as either a cold plasma state or warm dense matter. The electron density can be significantly modified in a laser-excited state, and could dramatically alter the interatomic forces, which could in turn lead to coherent atomic motion (precursor of solid-solid phase transition) depending on the microscopic interaction for a given material. Such modified interactions, called "nonthermal forces", can induce structural transitions, such as ultrafast non-thermal melting²⁻⁴ or solid-solid phase $transformations^{5-12}$ on a very short time scale. As energy is gradually transferred to the ions the ionic temperature increases and can exceed the material's melting temperature, leading to ultrafast thermal melting. The majority of metallic elements exhibit either one of the closed packed structures (face-centred cubic (fcc) or hexagonal close packed (hcp)) or the more open bodycentred cubic (bcc) structure. One may expect that the close packed structures would be very stable configurations as each atom is surrounded by 12 neighbours which represent the densest possible packing of hard spheres. However, many metals, such as tungsten, are exceptionally stable in the bcc structure while the close packed fcc and hcp structures are dynamically unstable ^{13,14}. By contrast, for metals where the stable structure is close packed the bcc structure tends to be dynamically unstable. External constraints, such as pressure, can stabilise the dynamically unstable phases to a point where they become the thermodynamically most stable phase, even if the original phase remains dynamically stable¹⁵. Under these conditions a non-diffusive, or martensitic, solidsolid phase transformation will occur at a rate determined by the energy barrier along the transitional path. Recent ab initio calculations by Giret et al. show that at high electronic temperatures an increase in the electron density in the Cartesian directions can lead to bcc W becoming dynamically unstable, while both close packed structures become dynamically stable¹². As the initial bcc phase becomes unstable there is no barrier to transition to either the fcc phase via the tetragonal Bain path or the hcp phase via the hexagonal Burgers path, therefore a transition could occur on a sub-picosecond timescale. While these calculations indicate that a phase transformation is likely, the dynamics of such a phase transformation have not been studied. In particular, it is not clear whether bcc tungsten will transform into the fcc or hcp structure or whether such a transition will occur a) Electronic mail: samuel.murphy@ucl.ac.uk in the conditions present during ultrafast laser irradiation. Such short timescales should render the structural transformation amenable to study using *ab initio* molecular dynamics (MD) simulations. Therefore, the first aim of this work is to study the dynamics occurring in W at elevated electronic temperatures using *ab initio* MD. Within the Born-Oppenheimer approximation, employed in ab initio MD simulations, the electronic temperature remains constant. As a consequence, energy transfer to the ions via electron-phonon coupling is neglected in these simulations. While it is possible to incorporate electron-phonon coupling into ab initio simulations using such techniques as correlated electron-ion dynamics (CEID) 16 or surface hopping 17,18 , these are computationally intensive and cannot be extended to supercell sizes sufficient to enable comparisons with experimentally determined time-resolved X-ray or electron diffraction data. As a result, there has been much effort to develop less expensive models based on classical MD where the forces on the ions are determined using an empirical pair potential. Electronic effects may be incorporated by coupling the MD supercell to an electronic subsystem creating a hybrid continuum-atomistic two temperature molecular dynamics (2T-MD) model where energy is able to transfer between the two subsystems ^{19,20}. In general these simulations are performed using an empirical potential that has been fitted to reproduce properties of the ground state system and therefore neglect nonthermal forces. However, this limitation may be, at least partially, ameliorated through the development of electronic temperature dependent potentials. Daraszewicz et al. have shown that incorporating non-thermal effects via a T_e -dependent potential makes it possible to reproduce the experimentally observed Bragg peak evolution in laser irradiated gold nano films²⁰. Therefore, the second aim of this work is to develop a T_e -dependent potential for W for use in 2T-MD simulations. Finally, we use these new empirical potentials to examine the possibility of observing a laser induced solid-solid phase transformation in W during laser irradiation using 2T-MD ### II. BORN-OPPENHEIMER MOLECULAR DYNAMICS Density functional theory (DFT) MD simulations were performed on a $6\times6\times6$ supercell, containing 432 W atoms in the CP2K code²¹. Exchange correlation was approximated using the generalised gradient approximation (GGA) formulation of Perdew, Burke and Ernzerhoff²². W was represented using a mixed Gaussian/plane-wave basis set where the Gaussian basis sets employed a double- ζ basis set with polarisation functions²³. The plane wave cutoff for the GTH pseudo-potentials was set to 4762 eV (350 Ry)²⁴. Dynamical simulations were performed using a timestep of 2.5 fs with the Canonical Sampling/Velocity Rescaling (CSVR)^{25,26} thermo and barostats and a target temperature of 300 K and 0 GPa for all elements of the stress tensor. The electronic tem- FIG. 1. Evolution of the lattice parameters of a 432-atom W supercell during a DFT-MD simulation with $T_e = 20,000$ K. The insets show the simulation supercell at the beginning of the simulation and at 1.5 ps. Atoms are coloured according to their local coordination where blue, green and red spheres represent bcc, fcc and hcp coordinated atoms respectively. Identification of coordination environments was performed using the adaptive common neighbour algorithm of Stukowski²⁸. perature was set to 20,000 K using the finite temperature generalisation to DFT of Mermin²⁷. At the beginning of the simulation the a, b and c supercell lattice parameters increase at the same rate (see figure 1) as a result of the depopulation of the half-filled 5d and completely filled 6s and 4f bands. As the simulation proceeds, the a lattice parameter increases dramatically while there are small decreases in b and c. The oscillations, seen in figure 1, are due to elastic response of the lattice to the sudden introduction of a more repulsive potential. Damping of these oscillations is caused by the action of the thermostat removing both thermal and non-thermal kinetic energy from the system. As the ratios between a and b and c increase, the cell undergoes a martensitic phase transformation along the tetragonal Bain path into the fcc phase, with a stacking fault due to two layers of atoms having a local coordination representative of the hcp phase. As a result of the stacking fault the a/c and a/b ratios reach 1.27 and 1.34 respectively and the b/c ratio is 1.06, as opposed to the $\sqrt{2}$, $\sqrt{2}$ and 1 expected from an idealised transformation along the tetragonal Bain path. In order to anneal out the stacking fault, further dynamics simulations with a lattice temperature of 600 K were performed, however, the stacking fault remained on the timescale accessible to DFT-MD. At 1.8 ps the electronic temperature was instantaneously reduced to 300 K. When T_e is reduced the lattice parameters return to their initial values as the system undergoes a similar martensitic transformation back to the bcc phase within 0.2 ps. Having established that tungsten will undergo a solidsolid phase transition on a picosecond timescale at a constant high electronic temperature, we examine whether this phase transformation will occur during a laser irradiation experiment using 2T-MD. In order to incorporate these non-thermal forces into the 2T-MD simulations we now develop an electronic temperature dependent potential for tungsten. ## III. DEVELOPMENT OF THE \mathbf{T}_e -DEPENDENT POTENTIAL The majority of the potentials developed for W^{29-39} adopt the embedded atom model (EAM), where the total energy, U_{tot} is given as: $$U_{tot} = \frac{1}{2} \sum_{i \neq j} V(r_{ij}) - \sum_{i} f(\rho_i), \qquad (1)$$ where $V(r_{ij})$ represents the repulsion of the atoms' nuclei and $f(\rho_i)$ is an embedding term that represents the cohesive energy for an effective electron density, ρ_i . Within the Finnis-Sinclair model the embedding energy can be expressed as $f(\rho_i) = -A\sqrt{\rho_i}$, where A is an empirically derived potential parameter²⁹. The effective electron density on an atom, ρ_i , can be calculated as a pairwise sum of contributions from its nearest neighbours, that is: $$\rho_i = \sum_{j \neq i} \phi(r_{ij}). \tag{2}$$ The only materials for which interatomic potentials currently include effects of electronic excitation are Au^{40} , Si^{41-43} , Mo^{44} and W^{45} . The potentials for Au and Si were created by assuming the functional forms of the potentials remain unchanged at high T_e . The potential parameters were derived using force matching and polynomials of different orders are used to show the parametric dependence on T_e . The potential for W was based on the Finnis-Sinclair potential with a modified T_e -dependent embedding term that incorporates changes in the potential energy and entropy due to electronic excitation explicitly⁴⁵. This approach was extended to other bcc metals by Mason^{46} . The electronic free energy, A, may be written $$A = \sum_{i} f_{i} \varepsilon_{i} - \frac{1}{2} E_{H} - \int \rho(r) V_{xc} dr + E_{xc} + E_{ZZ} - T_{e} S.$$ $$(3)$$ Here the first term, which is a sum over one-electron eigenenergies, ε_i , is the band energy (where f_i is the Fermi-Dirac occupation numbers for a given T_e). The second term corrects for the double counting of the electron-electron interaction energy in a single particle treatment. The third term subtracts the energy arising from the exchange correlation potential and the fourth term adds the correct exchange correlation energy, E_{xc} . The final two terms are the core-core interaction energy and the contribution of the electronic entropy, respectively. Each of these terms, with the exception of the core-core term would be expected to have some dependence on the electronic temperature; however, following Khakshouri $et\ al.$, we assume that this T_e -dependence is only significant for the band energy and the electronic entropy. In the empirical tight-binding model the remaining terms are treated as a sum of empirical repulsive components. Following this approach these repulsive terms have been attributed to the repulsive part of the EAM potential, i.e.: $$\frac{1}{2}\sum_{ij}V(r_{ij}) = -\frac{1}{2}E_H - \int \rho(r) V_{xc} dr + E_{xc} + E_{ZZ}.$$ (4) As the repulsion is dominated by the core-core term, which, as already mentioned, exhibits no dependency on T_e , this repulsive term will also show no dependence on the electronic temperature. Consequently, the ground state repulsive term may be adopted from any of the available empirical potential models. Here we use the extended Finnis-Sinclair potential of Dai $et\ al.^{34}$ as it is capable of reproducing many of the experimentally observed properties of W while also having a relatively simple functional form. Similarly the calculation of the effective density is treated using the original potential. Khakshouri et al. 45 then developed a T_e -dependent embedding term, based on a rectangular density of states, however here we adopt a much simpler approach. The T_e -dependent embedding term is derived by fitting to the free energy-volume surface, calculated from high temperature DFT, for bcc tungsten. For each volume the effective density is calculated using the original potential and the T_e -dependent embedding term is then calculated using: $$\sum_{i} f(\rho_{i}, T_{e}) = A^{DFT}(\rho_{i}, T_{e}) + dE(T_{e}) - \frac{1}{2} \sum_{i \neq j} V(r_{ij}),$$ (5) where $dE\left(T_{e}\right)$ is a constant shift, applied to the DFT free energies at each electronic temperature to ensure that G=0 at the limit of the potential for each electronic temperature. DFT simulations used for fitting the new T_e dependent potentials were performed using the ABINIT package^{47,48}. Exchange-correlation was modelled using the local density approximation (LDA). Normconserving pseudo-potentials that retained the 5d and 6s electrons as valence were employed and the planewave expansion was truncated at 60 Ha (1632 eV). Simulations were performed on the primitive until, containing two atoms, with a $16 \times 16 \times 16$ Monkhorst-Pack k-point grid used to sample the Brillouin zone⁴⁹. The calculated lattice parameter of 3.196 Å is in good agreement with the experimental value of 3.16 Å and the phonon spectra are also in excellent agreement with experiment 12. Free-energy/volume surfaces were generated by performing single point simulations for a series of volumes for electronic temperatures between 0 and 30,000 K in increments of 5000 K. Potentials for intermediate temperatures were created using cubic splines and stored in tabular form and can be found in the Supplementary Material⁵⁰. Figure 2(a) shows that as the electronic temperature rises, the free energy decreases due to the increased importance of the entropy, T_eS , contribution, in good agreement with previous results^{45,51}. Furthermore, as the electronic temperature increases, the minimum in the free energy is shifted to larger volumes, implying that electronic excitation will cause expansion, as observed in the DFT-MD simulation above. By 30,000 K the minimum in the free energy/volume surface has disappeared and the potential has become completely repulsive. The new potentials and embedding terms are plotted in figures 2(b) and 2(c), respectively. Also included in the plots are the potential and embedding terms for the original Dai potential. The potentials were tested by performing a series of MD simulations at 1 K within the NPT ensemble for electronic temperatures up to 25,000 K. The lattice parameters are plotted in figure 3. At low electronic temperatures the lattice parameters predicted by the potential are in excellent agreement with those calculated using ABINIT. As T_e increases above 11,000 K, the a lattice parameter continues to increase, however, there is a small decrease in the b and c lattice parameters thus breaking the original bcc cubic symmetry creating a body centred tetragonal (bct) phase with space group 14/MMM. The a/c ratio continues to increase with increasing electronic temperature until at 17,000 K it reaches $\sqrt{2}$, at which point another phase transformation occurs, this time to the fcc structure. Taking the final relaxed fcc structure at 20,000 K and restarting the simulation with the T_e reduced to 300 K results in a transformation back to the initial bcc structure. These simulations suggest that the potential is capable of reproducing some important aspects of the phonon spectrum such as the dynamic stabilities of the bcc and fcc phases. In order to provide a direct comparison with the DFT simulation presented in figure 1 a similar simulation was performed in a cell containing 432 atoms and a lattice temperature of 300 K using the new potential at 20,000 K. The evolution of the lattice parameters is presented in figure 4. In contrast to the DFT simulation shown above, the simulation using the empirical potential does not generate a stacking fault. The presence of the stacking fault in the DFT simulation may be due to the choice of barostat and the barostat relaxation time, however, it is not possible to reproduce the exact simulation conditions using the empirical potential because of the different barostats implemented in the codes. As shown in figure 2, the well depth of the potentials decrease as the electronic temperature is increased, implying that the melting temperature would decrease. We examine how the melting point changes as a function of the electronic temperature using the moving interface method⁵². The melting temperature of W calculated as a function of T_e is presented in figure 5. In the ground state, the melting point is predicted to be approximately 3800 K, which is in good agreement with the experimen- tal value of 3695 K^{53} and the 3925 K calculated by Liu etal. using MD and the Dai potential⁵⁴. As T_e increases, the melting temperature is shown to decrease dramatically and it appears that it will reach zero at the point at which the minimum in the potential energy surface disappears completely and the crystal becomes unstable, as would be anticipated. By contrast Feng et al. predict, based on their vacancy formation energies at high T_e calculated using DFT, that the melting temperature of tungsten will increase as the electronic temperature is increased.⁵¹ We note that these simulations were performed in a supercell with a fixed volume. A decrease in the melting temperature, similar to that observed here, has been observed in molecular dynamics simulations of Si under constant pressure conditions⁴². This reduction in the melting point is non-thermal, therefore can only be incorporated into the simulation through the use of T_e -dependent potentials, as employed here. ### IV. 2T-MD SIMULATIONS OF LASER IRRADIATION OF W THIN FILMS In order to investigate the possibility of a phase transformation being observed under conditions typical of a laser irradiation experiment we employ two-temperature molecular dynamics (2T-MD) simulations. Within the 2T-MD method the atoms are represented as an array of points that are allowed to evolve in time using molecular dynamics (MD) with the forces between atoms calculated using the new T_e -dependent potential. The influence of processes, such as electronic stopping and electron-phonon coupling, are explicitly incorporated into the ion dynamics by coupling the ion system to a continuum electronic subsystem and allowing energy transfer between the two systems. The 2T-MD method assumes that the evolution of the electronic temperature in time follows the heat diffusion equation, i.e. $$C_{e}\left(T_{e}\right)\frac{\partial T_{e}}{\partial t} = \nabla \cdot \left(\kappa_{e} \nabla T_{e}\right) - G\left(T_{e}\right)\left(T_{e} - T_{i}\right) + S\left(z, t\right),$$ (6) where $C_e\left(T_e\right)$ is the electronic specific heat, $G\left(T_e\right)$ is the electron-phonon coupling and κ_e is the electronic heat conductivity. $S\left(z,t\right)$ is a source term that in this case represents energy deposited by the laser. The source term is described as a pulse that is Gaussian in time and has an exponentially decreasing amplitude in z, that is: $$S(z,t) = \left(\frac{2F}{l_p t_p} \frac{\sqrt{\ln 2}}{\pi}\right) e^{-4\ln 2(t-t_0)^2/t_p^2} e^{-z/l_p}, \quad (7)$$ where F is the absorbed fluence, l_p is the optical penetration depth of the sample at the wavelength of the pulse length, t_p is the duration of the pulse at the full width half maximum (FWHM) and t_0 is the time zero defined as the maximum of the laser pulse on the sample surface.⁵⁵ As we are only considering thin films in FIG. 2. Details of the T_e -dependent potential. Figure 2(a) shows the per atom free energy calculated using DFT that is used to fit the new potential. As T_e is increased the electronic entropy drives the free energy lower as well as increasing the equilibrium volume, 2(b) shows the energy per atom calculated using the new potentials and 2(c) shows the new embedding term. FIG. 3. Lattice parameters for tungsten as a function of the electronic temperature, T_e calculated using the new empirical potential and DFT. DFT lattice parameters were determined by performing a series of single point calculations at increasing volumes, and so are constrained to be bcc. Lattice parameters calculated using the empirical potential are the result of energy minimisation at constant pressure. The empirical potential predicts that at low electronic temperatures the bcc phase is stable and the lattice parameters are in good agreement with the DFT, however, at intermediate values of T_e the body centred tetragonal phase becomes dominant. At high electronic temperatures the fcc structure becomes dominant. at the beginning of the simulation and at 1.5 ps. Atoms are coloured according to their local coordination where blue and green spheres represent bcc and fcc and coordinated atoms respectively. Identification of coordination environments was performed using the adaptive common neighbour algorithm of Stukowski²⁸. FIG. 4. Evolution of the lattice parameters of a 432-atom W supercell during a MD simulation using empirical potentials with $T_e = 20,000$ K. The insets show the simulation supercell this study we can assume homogeneous excitation of the electronic subsystem and so the κ_e and z dependencies in equations 6 and 7 disappear. cellent agreement with Lin $et\ al.$ and more recent DFT studies $^{60-62}$. The ionic subsystem is evolved in parallel with the electronic subsystem using classical MD. The traditional equations of motion are modified, such that: A number of studies have suggested that the electronphonon coupling is significantly enhanced in ultrathin films of typically 2 atomic layers, however, at thicknesses comparable to those studied here the electron-phonon coupling is expected to be similar to the bulk value^{56,57}. Therefore, we use the electronic temperature dependent electron-phonon coupling and specific heats for bulk W, with G_0 calculated in previous work⁵⁸ and extrapolated to high T_e following the methodology of Lin $et\ al.^{59}$. For low electronic temperatures, such as those encountered here, our calculated electronic specific heats are in ex- $$m_i \frac{\partial \mathbf{v}_i}{\partial t} = \mathbf{F}_i + \tilde{\mathbf{F}}_i (T_t),$$ (8) where \mathbf{v}_i is the velocity of an atom with mass, m_i . \mathbf{F}_i is the classical force acting on the atom calculated using the empirical potential and $\tilde{\mathbf{F}}_i$ is the additional driving term, based on a modified Langevin thermostat formulation: $$\tilde{\mathbf{F}}_{i}\left(T_{t}\right) = -\gamma \mathbf{v}_{i} + \mathbf{f}_{L}\left(T_{t}\right),\tag{9}$$ where γ represents a frictional drag force and \mathbf{f}_L is the stochastic force and T_t is the target temperature of the thermostat, which is set equal to T_e . For more details FIG. 5. Melting temperature of tungsten as a function of the electronic temperature. We note that at 15,000 K the calculated melting point is for the bct structure. Similarly, at 20,000 and 25,000 K the melting point is for fcc W. of the formulation of the Langevin thermostat and its dependence on $G(T_e)$ refer to previous work^{20,63,64}. Laser irradiation simulations were performed using a local version of the DL-POLY (4.01) code⁶⁵ on a tungsten slab, created by taking $30\times30\times60$ repetitions of the bcc unit cell, with a resulting slab thickness of $\sim 190 \text{Å}$ containing 108,000 atoms. The simulation supercell was periodic in x and y and the supercell length in z was doubled to allow for any possible expansion during laser irradiation with the final supercell lattice parameters of $x=96.18,\ y=96.18$ and z=384.72 Å. As the area of the laser spot is greater than the simulation cell in x and y, we assume that the cell boundaries remain fixed during the simulation as the excited atoms surrounding the simulation cell impart a sufficient pressure to prohibit expansion in the lateral directions. The ionic simulation supercell was initially relaxed under constant volume conditions using a Nose-Hoover thermostat at 300 K for 6 ps with a timestep of 0.2 fs. Once equilibration was complete the ionic system was connected to the continuum system and the initial electronic temperature set to 300 K. Energy was deposited into the electronic subsystem by a laser pulse with a FWHM = 76 fs and an absorbed fluence sufficient to ensure the electronic temperature was high enough to induce the phase transformation (in this case $F=80~{\rm mJ}$ cm⁻² and $l_p=150~{\rm \AA}$). The system is subsequently allowed to evolve for 6 ps. Figure 6 shows the evolution of the electronic and ionic temperatures during laser irradiation. During the laser pulse the electronic temperature rapidly increases until reaching a maximum electronic temperature of $\sim 22,000$ K at ~ 0.4 ps. As energy is transferred to the ionic subsystem, the average lattice temperature climbs rapidly and exceeds the T_e -dependent melting and crystal stability temperatures within 0.34 ps and 0.36 ps respectively. Finally, the electronic and ionic temperatures reach equi- FIG. 6. Evolution of the electronic and ionic temperatures during irradiation of tungsten with a 76 fs laser pulse delivering a fluence of 80 mJ cm⁻². Also included in the plot are the T_e -dependent melting and crystal stability temperatures. librium at 6 ps. Figure 7 shows the atomic scale evolution of the thin film during laser irradiation and is split into two sections. All atoms in the cell, colour coded according to the local bonding environment, are shown in figures 7(a)-7(e). As the simulation proceeds the film undergoes a homogenous melting process with nearly all traces of bcc tungsten having disappeared by 0.8 ps. From these images it appears that there is no solid-solid phase transformation due to the high electronic temperature, however, if we look at atoms with the fcc structure only, as shown in figures 7(g)-7(j) we can see that there is a concentration of atoms that are locally fcc coordinated beneath the film's surfaces. In fact, as much as 1% of all atoms in the system have an fcc coordination at 0.5 ps. However, from this point the concentration of fcc coordinated atoms begins to decrease. This decrease does not occur due to the electronic temperature dropping below that required to stabilise the fcc phase, which occurs at 0.91 ps, but due to the very rapid increase in the ionic temperature leading to ultrafast non-thermally assisted melting. We refer to this as non-thermally assisted ultrafast melting due to the significant decrease in the melting temperature arising from changes in the empirical potential at elevated electronic temperatures. We note that Wahrenberg et al. have observed the presence of a fcc-like liquid phase on the surface of laser irradiated tungsten from time-resolved photoelectron spectroscopy⁶⁶. ### V. DISCUSSION Our simulation suggests that, while a small number of atoms modify their local coordination environment, the ultrafast non-thermally assisted melting occurs so rapidly that it would not be possible to observe the solid-solid phase transformation in tungsten experimentally. The speed with which energy is transferred to the ions is due FIG. 7. Structure of the tungsten slab during irradiation with a 76 fs laser pulse of fluence 80 mJ cm $^{-2}$. In the diagrams the atoms are coloured according to their local structure, blue corresponds to atoms that are locally bcc, green spheres are atoms displaying the fcc structure and white spheres correspond to atoms which are deemed to have no crystal structure. Local structures were determined using the adaptive common neighbour analysis²⁸. All atoms are shown in figures 7(a)-7(e) and only atoms that are fcc coordinated are shown in figures 7(f)-7(j). to the material dependent electron-phonon coupling. For tungsten the electron-phonon coupling is known to be very strong, i.e. an order of magnitude greater than that calculated for gold^{58,59}. While it may not be possible to observe a solid-solid phase transformation in tungsten, it is possible that other metals may become dynamically unstable due to electronic excitation and have a high enough melting point and low enough electron-phonon coupling to stabilise the new phase. To investigate this scenario we performed a further simulation on a material that has many of the same physical properties as tungsten, however, the electron-phonon coupling has been reduced by an order of magnitude. The reduction in the electron-phonon coupling reduces the rate at which energy is transferred to the lattice so the increase in the ionic temperature is much slower, ensuring the film takes longer to melt. Figure 8 shows heterogeneous nucleation of the fcc phase from the film's surfaces. FIG. 8. Structure of the tungsten slab during irradiation with a 76 fs laser pulse of fluence 80 mJ cm $^{-2}$ where the electron-phonon coupling has been artificially reduced by an order of magnitude. In the diagrams the atoms are coloured according to their local structure, blue corresponds to atoms that are locally bcc, green spheres are atoms displaying the fcc structure and white spheres correspond to atoms which are deemed to have no crystal structure. Local structures were determined using the adaptive common neighbour analysis 28 . The average velocity of the phase transformation fronts was 2360 ms⁻¹, which is 45% of the speed of sound in tungsten (taken as 5220 ms⁻¹)⁶⁷. This phase front velocity is substantially greater than that expected for the heterogeneous melting transition⁶⁸. Approximately, 25% of the film has undergone a transition to the fcc structure prior to melting. A structural transformation of such a large proportion of the film should be observable using ultrafast X-ray or electron diffraction. ### VI. SUMMARY In this work we show the first dynamical simulation of a solid-solid phase transformation in a metal driven by electronic excitation using DFT assuming a constant electronic temperature. We have developed a T_e -dependent interatomic potential that is capable of reproducing the dynamical stabilities of the relevant phases as a function of the electron temperature, thereby reproducing this phase transformation. The new potential was then used in 2T-MD simulations that replicate the conditions likely to occur during femto-second laser irradiation of tungsten thin films. The 2T-MD simulations show that under these conditions ultrafast non-thermally assisted melting dominates over the solid-solid phase transformation. The new potential will enable us to study other experimental configurations that may impede energy transfer to the ions thereby giving the phase transition sufficient time to occur. The methods applied both for the 2T-MD and fitting of the empirical potential may be applied to a wide variety of other materials which display properties that may be more accommodating for a solid-solid phase transformation. #### **ACKNOWLEDGMENTS** STM acknowledges funding from the Leverhulme trust (grant number RPG-2013-331). Via our membership of the UK's HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work made use of the facilities of HECToR and ARCHER, the UK's national high-performance computing service, which is funded by the Office of Science and Technology through EPSRC's High End Computing Programme. Additional computational resources were provided by the high performance computer centre at UCL. - ¹K. H. Bennemann, "Ultrafast dynamics in solids," J. Phys.: Condens. Matter 16, R995–R1056 (2004). - ²A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, "Non-thermal melting in semi-conductors measured at femtosecond resolution," Nature 410, 65–68 (2001). - ³K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001). - ⁴P. L. Silvestrelli, A. Alavi, M. Parrinello, and D. Frenkel, "Ab initio molecular dynamics simulation of laser melting of silison," Phys. Rev. Lett. **77**, 3149 (1996). - ⁵P. Beaud, S. L. Johnson, E. Vorobeva, U. Staub, R. A. DeSouza, C. J. Milne, Q. X. Jia, and G. Ingold, "Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order," Phys. Rev. Lett. 103, 155702 (2009). - ⁶ J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, and K. Nasu, "Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite," Phys. Rev. Lett. **102**, 087402 (2009). - ⁷C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-induced graphitization on a diamond (111) surface," Phys. Rev. Lett. 85, 4092 (2000). - ⁸H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microsocopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701 (1999). - ⁹R. Nuske, A. Jurgilaitis, H. Enquist, M. Harb, Y. Fang, U. Hakanson, and J. Larsson, "Transforming graphites to nanoscale diamonds by a femtosecond laser pulse," Appl. Phys. Lett. 100, 043102 (2012). - ¹⁰N. Medvedev, V. Tkachenko, and B. Ziaja, "Modelling of non-thermal solid-to-solid phase transition in diamond irradiated with femtosecond x-ray fel pulse," Contrib. Plasma Phys. 55, 12–34 (2015). - ¹¹E. S. Zijlstra, N. Huntemann, and M. E. Garcia, "Laser-induced solid-solid phase transition in as under pressure: a theoretical prediction," New J. Phys. **10**, 033010 (2008). - ¹²Y. Giret, S. L. Daraszewicz, D. M. Duffy, A. L. Shluger, and K. Tanimura, "Nonthermal solid-to-solid phase transitions in tungsten," Phys. Rev. B **90**, 094103 (2014). - ¹³V. Ozolins, "First principles calculations of free energies of unstable phases: The case of fcc w," Phys. Rev. Lett. **102**, 065702 (2009). - ¹⁴K. Einarsdotter, B. Sadigh, G. Grimvall, and V. Ozolins, "Phonon instabilities in fcc and bcc tungsten," Phys. Rev. Lett. 79, 2073 (1997). - ¹⁵G. Grimvall, B. Magyari-Kope, V. Ozolins, and K. A. Persson, "Lattice instabilities in metallic elements," Rev. Mod. Phys. 84, 945 (2012). - ¹⁶A. P. Horsfield, M. Finnis, M. Foulkes, J. LePage, D. Mason, C. Rave, A. P. Sutton, D. R. Bowler, A. J. Fisher, R. Miranda, L. Stella, A. M. Stoneham, D. Dundas, E. McEniry, T. N. Todorov, and C. G. Sanchez, "Correlated electron-ion dynamics in metallic systems," Comput. Mater. Sci. 44, 16–20 (2008). - ¹⁷J. C. Tully and R. K. Preston, "Trajetory surface hopping approach to nonadiabatic molecular collisions: The reaction of h+with d2," J. Chem. Phys. 55, 562 (1971). - ¹⁸D. S. Scholl and J. C. Tully, "A generalised surface hopping method," J. Chem. Phys. **109**, 7702 (1998). - ¹⁹D. S. Ivanov and L. V. Zhigilei, "Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films," Phys. Rev. B 68, 064114 (2003). - ²⁰S. L. Daraszewicz, Y. Giret, N. Naruse, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, and K. Tanimura, "Structural dynamics of laser-irradiated gold nanofilms," Phys. Rev. B 88, 184101 (2013). - ²¹J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, "cp2k: atomisitic simulations of condensed matter systems," Wiley Inter. Re.: Comp. Mol. Sci. 4, 15–25 (2014). - ²²J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. **77(18)**, 3865 (1996). - ²³G. Lippert, J. Hutter, and M. Parrinello, "A hybrid gaussian and plane wave density functional scheme," Mol. Phys. **92**, 477–487 (1997). - ²⁴S. Goedecker, M. Teter, and J. Hutter, "Seperable dual-space gaussian pseudopotentials," Phys. Rev. B **54(3)**, 1703–1710 (1996). - ²⁵G. Bussi, D. Donadio, and M. Parrinello, "Canonical sampling through velocity rescaling," J. Chem. Phys. **126**, 014101 (2007). - ²⁶G. Bussi, T. Zykova-Timan, and M. Parrinello, "Isothermalisobaric molecular dynamics using stochastic velocity rescaling," J. Chem. Phys. **130**, 074101 (2009). - ²⁷N. D. Mermin, "Thermal properties of the inhomogeneous electron gas," Phys. Rev. **137**, A1441 (1965). - ²⁸ A. Stukowski, "Visualisation and analysis of atomistic simulation data with ovito - the open vizualization tool," Modell. Simul. Mater. Sci. Eng. **20**, 045021 (2012). - ²⁹M. W. Finnis and J. E. Sinclair, "A simple empirical n-body potential for transition metals," Phil. Mag. 50, 45 (1984). - ³⁰G. J. Ackland and R. Thetford, "An improved n-body semiempirical model for body-centred cubic transition metals," Phil. Mag. **56**, 15 (1987). - ³¹L. T. Kong, X. Y. Li, W. S. Lai, J. B. Liu, and B. X. Liu, "Interfacial reaction of w/cu examined by an n-body potential through molecular dynamics simulations," Japan J. Appl. Phys. 41, 4503 (2002). - ³²R. F. Zhang, H. R. Gong, L. T. Kong, and B. X. Liu, "Comparative study of metastable phase formation in the immiscible cu-w system by ab initio calculation and n-body potential," J. Phys.: Condens. Matter 16, 5251 (2004). - ³³R. F. Zhang, Y. X. Shen, H. F. Yan, and B. X. Liu, "Formation of amorphous alloys by ion beam mixing and its multiscale theoretical modelling in the equilibrium immiscible sc-w system," J. Phys. Chem. B **109**, 4391 (2005). - ³⁴X. D. Dai, Y. Kong, J. H. Li, and B. X. Liu, "Extended finnissinclair potential for bcc and fcc metals and alloys," J. Phys.: Condens. Matter 18, 4527–4542 (2006). - ³⁵P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, "Multiscale modelling of crowdion and vacancy defects in body-centeredcubic transition metals," Phys. Rev. B 76, 054107 (2007). - $^{36}\mathrm{C.}$ Bjorkas, K. Nordlund, and S. L. Dudarev, "Modelling radiation effects using the ab initio based tungsten and vanadium po- - tentials," Nucl. instrum. Methods Phys. Res. B **267**, 3204 (2009). - ³⁷N. Juslin and B. D. Wirth, "Interatomic potentials for simulation of he bubble formation in w," J. Nucl. Mater. 432, 61 (2013). - ³⁸M.-C. Marinica, L. Wentelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, "Interatomic potentials for modelling radiation defects and dislocations in tungsten," J. Phys.: Condens. Matter 25, 395502 (2013). - ³⁹J. Wang, Y. L. Zhou, M. Li, and Q. Hou, "A modified w-w interatomic potential based on ab initio calculations," Modelling Simul. Mater. Sci. Eng. 22, 015004 (2014). - ⁴⁰G. E. Norman, S. V. Starikov, and V. V. Stegailov, "Atomistic simulation of laser ablation of gold: Effect of pressure relaxation," J. Exp. Theor. Phys. 114, 792–800 (2012). - ⁴¹L. Shokeen and P. K. Schelling, "An empirical potential for silicon under conditions of strong electronic excitation," Appl. Phys. Lett. 97, 151907 (2010). - ⁴²L. Shokeen and P. K. Schelling, "Thermodynamics and kinetics of silicon under conditions of strong electronic excitation," J. Appl. Phys. **109**, 073503 (2011). - ⁴³L. Shokeen and P. K. Schelling, "Role of electronic-excitation effects in the melting and ablation of laser excited silicon," Comp. Mater. Sci. 67, 316–328 (2013). - ⁴⁴J. A. Moriarty, R. Q. Hood, and L. H. Yang, "Quantum-mechanical interatomic potentials with electron temperature for strong-coupling transition metals," Phys. Rev. Lett. **108**, 036401 (2012). - ⁴⁵S. Khakshouri, D. Alfe, and D. M. Duffy, "Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation," Phys. Rev. B **78**, 224304 (2008). - ⁴⁶D. Mason, "Incorporating non-adiabatic effects in embedded atom potentials for radiation damage cascade simulations," J. Phys.: Condens. Matter Condens. Matter 27, 145401 (2015). - ⁴⁷X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, and M. e. a. Cote, "Abinit: First-principles approach to material and nanosystem properties," Comput. Phys. Commun. **180**, 2582 (2009). - ⁴⁸X. Gonze, G.-M. Rignanese, M. Versraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, and M. E. A. Mikame, "A brief introduction to the abinit software package," Z. Kristallogr. 220, 558 (2005). - ⁴⁹H. J. Monkhorst and J. D. Pack, "Special points for brillouinzone integrations," Phys. Rev. B 13, 5188 (1976). - ⁵⁰See Supplemental Material at [URL] for the T_e-dependent potentials, tabulated for the DL_POLY code. - ⁵¹S. Feng, J. Zhao, X. Cheng, and H. Zhang, "Theoretical calculation on electronic excitation and compression effect in tungsten," Physica B 413, 69–72 (2013). - ⁵²J. F. Lutsko, D. Wolf, S. R. Phillpot, and S. Yip, "Molecular dynamics study of lattice-defect-nucleated melting in metals - using an embedded-atom-method potential," Phys. Rev. B 40, 2841–2855 (1989). - ⁵³D. Lide, Handbook of Chemistry and Physics 81st edn (CRC Press, Boca Raton, FL, 2000-20001). - ⁵⁴C.-M. Liu, X.-R. Chen, C. Xe, L.-C. Cai, and F.-Q. Jing, "Melting curves and entropy of fusion of body-centered cubic tungsten under pressure," J. Appl. Phys. **112**, 013518 (2012). - ⁵⁵Y. Giret, A. Gelle, and B. Arnaud, "Entropy driven atomic motion in laser-excited bismuth," Phys. Rev. Lett. **106**, 155503 (2011). - ⁵⁶T. Valla, M. Kralj, M. Milun, P. Pervan, P. D. Johnson, and Woodruff, "Oscillatory electron-phonon coupling in ultra-thin silver films on v(100)," J. Phys. Condens. Matter 12, L477 (2000). - ⁵⁷W. Ma, H. Wang, X. Zhang, and W. Wang, "Study of the electron-phonon relaxation in thin metal films using transient thermoreflectance technique," Int. J. Thermophys. 34, 2400–2415 (2013). - ⁵⁸S. L. Daraszewicz, Y. Giret, H. Tanimura, D. M. Duffy, A. L. Shluger, and K. Tanimura, "Determination of the electron-phonon coupling constant in tungsten," Appl. Phys. Lett. **105**, 023112 (2014). - ⁵⁹Z. Lin, L. V. Zhigilei, and V. Celli, "Electron-phonon coupling and electron heat capacities of metals under conditions of strong electron-phonon nonequilibrium," Phys. Rev. B 77, 075133 (2008). - ⁶⁰G. V. Sin'ko, N. A. Smirnov, A. A. Ovechkin, P. R. Levashov, and K. V. Khishchenko, "Thermodynamic functions of the heated electron subsystem in the field of cold nuclei," High Ener. Dens. Phys. 9, 309–314 (2013). - ⁶¹E. Bevillon, J. P. Colombier, V. Recoules, and R. Stoian, "Free electron propereties of metals under ultrafast laser-induced electron-phonon non-equilibriums: a first principles study," Phys. Rev. B 89, 115117 (2014). - ⁶²E. Bevillon, J. P. Colombier, V. Recoules, and R. Stoian, "First principles calculations of heat capacities of ultrafast laser-excited electrons in metals," Appl. Surf. Sci. 336, 79–84 (2015). - ⁶³D. M. Duffy and A. M. Rutherford, "Including the effects of electronic stopping and electron—ion interactions in radiation damage simulations," J. Phys.: Condens. Matter 19, 016207 (2007). - ⁶⁴A. M. Rutherford and D. M. Duffy, "The effect of electron—ion interactions on radiation damage simulations," J. Phys.: Condens. Matter 19, 496201 (2007). - ⁶⁵I. T. Todorov, S. W., K. Trachenko, and M. T. Dove, "Dlpoly3: new dimensions in molecular dynamics simulations via massive parallelism," J. Mater. Chem. 16, 1911 (2006). - ⁶⁶R. Wahrenberg, H. Stupp, H.-G. Boyen, and P. Oelhafen, "Electronic structure of liquid tungsten studied by time-resolved photoelectron spectroscopy," Europhys. Lett. 49 (2000). - ⁶⁷D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 7th ed. (CRC Press, Boca Raton, FL, 1991). - ⁶⁸D. S. Ivanov and L. V. Zhigilei, "Kinetic limit of heterogeneous melting in metals," Phys. Rev. Lett. 98, 195701 (2007).