8 research outputs found

    Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits.

    Get PDF
    BACKGROUND: Influenza is a deadly and costly public health problem. Variations in its seasonal patterns cause dangerous surges in emergency department (ED) patient volume. Google Flu Trends (GFT) can provide faster influenza surveillance information than traditional CDC methods, potentially leading to improved public health preparedness. GFT has been found to correlate well with reported influenza and to improve influenza prediction models. However, previous validation studies have focused on isolated clinical locations. OBJECTIVE: The purpose of the study was to measure GFT surveillance effectiveness by correlating GFT with influenza-related ED visits in 19 US cities across seven influenza seasons, and to explore which city characteristics lead to better or worse GFT effectiveness. METHODS: Using Healthcare Cost and Utilization Project data, we collected weekly counts of ED visits for all patients with diagnosis (International Statistical Classification of Diseases 9) codes for influenza-related visits from 2005-2011 in 19 different US cities. We measured the correlation between weekly volume of GFT searches and influenza-related ED visits (ie, GFT ED surveillance effectiveness) per city. We evaluated the relationship between 15 publically available city indicators (11 sociodemographic, two health care utilization, and two climate) and GFT surveillance effectiveness using univariate linear regression. RESULTS: Correlation between city-level GFT and influenza-related ED visits had a median of .84, ranging from .67 to .93 across 19 cities. Temporal variability was observed, with median correlation ranging from .78 in 2009 to .94 in 2005. City indicators significantly associated (P CONCLUSIONS: GFT is strongly correlated with ED influenza-related visits at the city level, but unexplained variation over geographic location and time limits its utility as standalone surveillance. GFT is likely most useful as an early signal used in conjunction with other more comprehensive surveillance techniques. City indicators associated with improved GFT surveillance provide some insight into the variability of GFT effectiveness. For example, populations with lower socioeconomic status may have a greater tendency to initially turn to the Internet for health questions, thus leading to increased GFT effectiveness. GFT has the potential to provide valuable information to ED providers for patient care and to administrators for ED surge preparedness

    Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits

    Get PDF
    Background: Influenza is a deadly and costly public health problem. Variations in its seasonal patterns cause dangerous surges in emergency department (ED) patient volume. Google Flu Trends (GFT) can provide faster influenza surveillance information than traditional CDC methods, potentially leading to improved public health preparedness. GFT has been found to correlate well with reported influenza and to improve influenza prediction models. However, previous validation studies have focused on isolated clinical locations. Objective: The purpose of the study was to measure GFT surveillance effectiveness by correlating GFT with influenza-related ED visits in 19 US cities across seven influenza seasons, and to explore which city characteristics lead to better or worse GFT effectiveness. Methods: Using Healthcare Cost and Utilization Project data, we collected weekly counts of ED visits for all patients with diagnosis (International Statistical Classification of Diseases 9) codes for influenza-related visits from 2005-2011 in 19 different US cities. We measured the correlation between weekly volume of GFT searches and influenza-related ED visits (ie, GFT ED surveillance effectiveness) per city. We evaluated the relationship between 15 publically available city indicators (11 sociodemographic, two health care utilization, and two climate) and GFT surveillance effectiveness using univariate linear regression. Results: Correlation between city-level GFT and influenza-related ED visits had a median of .84, ranging from .67 to .93 across 19 cities. Temporal variability was observed, with median correlation ranging from .78 in 2009 to .94 in 2005. City indicators significantly associated (P Conclusions: GFT is strongly correlated with ED influenza-related visits at the city level, but unexplained variation over geographic location and time limits its utility as standalone surveillance. GFT is likely most useful as an early signal used in conjunction with other more comprehensive surveillance techniques. City indicators associated with improved GFT surveillance provide some insight into the variability of GFT effectiveness. For example, populations with lower socioeconomic status may have a greater tendency to initially turn to the Internet for health questions, thus leading to increased GFT effectiveness. GFT has the potential to provide valuable information to ED providers for patient care and to administrators for ED surge preparedness

    Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits

    No full text
    Background: Influenza is a deadly and costly public health problem. Variations in its seasonal patterns cause dangerous surges in emergency department (ED) patient volume. Google Flu Trends (GFT) can provide faster influenza surveillance information than traditional CDC methods, potentially leading to improved public health preparedness. GFT has been found to correlate well with reported influenza and to improve influenza prediction models. However, previous validation studies have focused on isolated clinical locations. Objective: The purpose of the study was to measure GFT surveillance effectiveness by correlating GFT with influenza-related ED visits in 19 US cities across seven influenza seasons, and to explore which city characteristics lead to better or worse GFT effectiveness. Methods: Using Healthcare Cost and Utilization Project data, we collected weekly counts of ED visits for all patients with diagnosis (International Statistical Classification of Diseases 9) codes for influenza-related visits from 2005-2011 in 19 different US cities. We measured the correlation between weekly volume of GFT searches and influenza-related ED visits (ie, GFT ED surveillance effectiveness) per city. We evaluated the relationship between 15 publically available city indicators (11 sociodemographic, two health care utilization, and two climate) and GFT surveillance effectiveness using univariate linear regression. Results: Correlation between city-level GFT and influenza-related ED visits had a median of .84, ranging from .67 to .93 across 19 cities. Temporal variability was observed, with median correlation ranging from .78 in 2009 to .94 in 2005. City indicators significantly associated (P Conclusions: GFT is strongly correlated with ED influenza-related visits at the city level, but unexplained variation over geographic location and time limits its utility as standalone surveillance. GFT is likely most useful as an early signal used in conjunction with other more comprehensive surveillance techniques. City indicators associated with improved GFT surveillance provide some insight into the variability of GFT effectiveness. For example, populations with lower socioeconomic status may have a greater tendency to initially turn to the Internet for health questions, thus leading to increased GFT effectiveness. GFT has the potential to provide valuable information to ED providers for patient care and to administrators for ED surge preparedness

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    Institutional Complexity and Organizational Responses

    No full text

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore