551 research outputs found

    COVID-19 and Cancer: Current Challenges and Perspectives.

    Get PDF
    Patients with cancer have been disproportionately affected by the COVID-19 pandemic. This effect has included the adverse outcomes in patients with cancer who develop COVID-19, the impact of the COVID-19 pandemic on the delivery of cancer care, and the severe disruption to cancer research. However, patients with cancer are a heterogeneous population, and recent studies have now documented factors that allow risk stratification of patients with cancer in order to optimize care. In this review, we highlight data at the intersection of COVID-19 and cancer, including the biological interplay between the two diseases and practical recommendations for the treatment of patients with cancer during the pandemic. We additionally discuss the potential long-lasting impact of the pandemic on cancer care due to its deleterious effect on cancer research, as well as biological insights from the cancer research community that could help develop novel therapies for all patients with COVID-19

    Real-world treatment patterns and outcomes for patients with advanced melanoma treated with immunotherapy or targeted therapy

    Get PDF
    Objective: To identify real-world patterns of first line treatment, treatment sequence and outcomes for older adults diagnosed with advanced melanoma who received immunotherapy or targeted therapy. Methods: The study population included older adults (ages 65+) diagnosed with unresectable or metastatic melanoma between 2012 and 2017 and who received first line immunotherapy or targeted therapy. Using the linked surveillance, epidemiology, and end results-medicare data, we described patterns of first line treatment and treatment sequence through 2018. We used descriptive statistics to report patient and provider characteristics by first line treatment receipt and changes in first line therapy use over calendar time. We also described overall survival (OS) and time to treatment failure (TTF) by first line treatment using the Kaplan–Meier method. For patterns of treatment sequence, we reported commonly observed treatment switch patterns by treatment sub-category and calendar year. Results: The analyses included 584 patients (mean age = 76.3 years). A majority (n = 502) received first line immunotherapy. There was a sustained increase in immunotherapy uptake, most notably from 2015 to 2016. The estimated median OS and TTF were longer with first line immunotherapy than with targeted therapy. Individuals treated with CTLA-4 + PD-1 inhibitors had the longest median OS (28.4 months). The most common treatment switch pattern was from a first line CTLA-4 inhibitor to a second line PD-1 inhibitor. Conclusions: Our findings inform understanding of treatment patterns of currently used immunotherapies and targeted therapies in older adults with advanced melanoma. Immunotherapy use has increased steadily with PD-1 inhibitors becoming a dominant treatment option since 2015

    A Search for Rapid Photometric Variability in Symbiotic Binaries

    Full text link
    We report on our survey for rapid (time scale of minutes) photometric variability in symbiotic binaries. These binaries are becoming an increasingly important place to study accretion onto white dwarfs since they are candidate Type Ia supernovae progenitors. Unlike in most cataclysmic variables, the white dwarfs in symbiotics typically accrete from a wind, at rates greater than or equal to 10^{-9} solar masses per year. In order to elucidate the differences between symbiotics and other white dwarf accretors, as well as search for magnetism in symbiotic white dwarfs, we have studied 35 primarily northern symbiotic binaries via differential optical photometry. Our study is the most comprehensive to date of rapid variability in symbiotic binaries. We have found one magnetic accretor, Z And, previously reported by Sokoloski & Bildsten (1999). In four systems (EG And, BX Mon, CM Aql, and BF Cyg), some evidence for flickering at a low level (roughly 10 mmag) is seen for the first time. These detections are, however, marginal. For 25 systems, we place tight upper limits (order of mmag) on both aperiodic and periodic variability, highlighting a major difference between symbiotics and cataclysmic variables. The remaining five of the objects included in our sample (the 2 recurrent novae RS Oph and T CrB, plus CH Cyg, o Ceti, and MWC 560) had previous detections of large-amplitude optical flickering, and we present our extensive observations of these systems in a separate paper. We discuss the impact of our results on the ``standard'' picture of wind-fed accretion, and speculate on the possibility that in most symbiotics, light from quasi-steady nuclear burning on the surface of the white dwarf hides the fluctuating emission from accretion.Comment: 24 pages, 17 figures. Submitted to MNRAS (12/21/00), and revised in response to referee comments (3/30/01

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009

    The Drift Directional Dark Matter Experiments

    Get PDF
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector

    Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars

    Get PDF
    Volcanism has been a dominant process on Mars, along with a pervasive global cryosphere. Therefore, the interaction between these two is considered likely. Terrestrial glaciovolcanism produces distinctive lithologies and alteration terrains, as well as hydrothermal environments that can be inhabited by microorganisms. Here, we provide a framework for identifying evidence of such glaciovolcanic environments during future Mars exploration, and provide a descriptive reference for active hydrothermal environments to be utilised for future astrobiological studies. Remote sensing data were combined with field observations and sample analysis that included X-ray diffraction, Raman spectroscopy, thin section petrography, scanning electron microscopy, electron dispersive spectrometer analysis, and dissolved water chemistry to characterise samples from two areas of basaltic glaciovolcanism: Askja and Kverkfjöll volcanoes in Iceland. The glaciovolcanic terrain between these volcanoes is characterised by subglacially-erupted fissure swarm ridges, which have since been modified by multiple glacial outburst floods. Active hydrothermal environments at Kverkfjöll include hot springs, anoxic pools, glacial meltwater lakes, and sulfur- and iron- depositing fumaroles, all situated within ice-bound geothermal fields. Temperatures range from 0 °C - 94.4 °C, and aqueous environments are acidic - neutral (pH 2 - 7.5) and sulfate-dominated. Mineralogy of sediments, mineral crusts, and secondary deposits within basalts suggest two types of hydrothermal alteration: a low-temperature ( 120 °C) assemblage signified by zeolite (heulandite) and quartz. These mineral assemblages are consistent with those identified at the Martian surface. In-situ and laboratory VNIR (440 – 1000 nm) reflectance spectra representative of Mars rover multispectral imaging show sediment spectral profiles to be influenced by Fe2 +/3 + - bearing minerals, regardless of their dominant bulk mineralogy. Characterising these terrestrial glaciovolcanic deposits can help identify similar processes on Mars, as well as identifying palaeoenvironments that may once have supported and preserved life

    Increasing comparability among coral bleaching experiments

    Get PDF
    Coral bleaching is the single largest global threat to coral reefs worldwide. Integrating the diverse body of work on coral bleaching is critical to understanding and combating this global problem. Yet investigating the drivers, patterns, and processes of coral bleaching poses a major challenge. A recent review of published experiments revealed a wide range of experimental variables used across studies. Such a wide range of approaches enhances discovery, but without full transparency in the experimental and analytical methods used, can also make comparisons among studies challenging. To increase comparability but not stifle innovation, we propose a common framework for coral bleaching experiments that includes consideration of coral provenance, experimental conditions, and husbandry. For example, reporting the number of genets used, collection site conditions, the experimental temperature offset(s) from the maximum monthly mean (MMM) of the collection site, experimental light conditions, flow, and the feeding regime will greatly facilitate comparability across studies. Similarly, quantifying common response variables of endosymbiont (Symbiodiniaceae) and holobiont phenotypes (i.e., color, chlorophyll, endosymbiont cell density, mortality, and skeletal growth) could further facilitate cross-study comparisons. While no single bleaching experiment can provide the data necessary to determine global coral responses of all corals to current and future ocean warming, linking studies through a common framework as outlined here, would help increase comparability among experiments, facilitate synthetic insights into the causes and underlying mechanisms of coral bleaching, and reveal unique bleaching responses among genets, species, and regions. Such a collaborative framework that fosters transparency in methods used would strengthen comparisons among studies that can help inform coral reef management and facilitate conservation strategies to mitigate coral bleaching worldwide

    Radon in the DRIFT-II directional dark matter TPC: emanation, detection and mitigation

    Get PDF
    Radon gas emanating from materials is of interest in environmental science and also a major concern in rare event non-accelerator particle physics experiments such as dark matter and double beta decay searches, where it is a major source of background. Notable for dark matter experiments is the production of radon progeny recoils (RPRs), the low energy (~ 100 keV) recoils of radon daughter isotopes, which can mimic the signal expected from WIMP interactions. Presented here are results of measurements of radon emanation from detector materials in the 1 m3 DRIFT-II directional dark matter gas time projection chamber experiment. Construction and operation of a radon emanation facility for this work is described, along with an analysis to continuously monitor DRIFT data for the presence of internal 222Rn and 218Po. Applying this analysis to historical DRIFT data, we show how systematic substitution of detector materials for alternatives, selected by this device for low radon emanation, has resulted in a factor of ~ 10 reduction in internal radon rates. Levels are found to be consistent with the sum from separate radon emanation measurements of the internal materials and also with direct measurement using an attached alpha spectrometer. The current DRIFT detector, DRIFT-IId, is found to have sensitivity to 222Rn of 2.5 μBql−1 with current analysis efficiency, potentially opening up DRIFT technology as a new tool for sensitive radon assay of materials

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure
    corecore