1,373 research outputs found

    Oblique-incidence reflectometry: one relative profile measurement of diffuse reflectance yields two optical parameters

    Get PDF
    A new, simple and quick approach, oblique-incidence reflectometry, was used to measure the absorption and reduced scattering coefficients of a semi-infinite turbid medium. An obliquely incident light beam causes the center of the far diffuse reflectance to shift from the point of incidence, where the far diffuse reflectance refers to the diffuse reflectance that is several transport mean free paths away from the incident point. The amount of shift yields the diffusion constant by a simple formula, and the slope of the diffuse reflectance yields the attenuation coefficient. Only the relative profile of the diffuse reflectance is needed to deduce both optical parameters, which makes this method attractive in clinical settings because it does not require a stringent calibration for absolute quantity measurements. This method was tested theoretically by Monte Carlo simulations and experimentally by a reflectometer. Because this method can be used to measure optical properties of biological tissues quickly and requires only inexpensive equipment, it has potential clinical application to the diagnosis of disease or monitoring of treatments

    Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    Get PDF
    Submitted to IEEE Trans. Biomed. Eng.Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.Lawrence Livermore National Lab

    Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    Get PDF
    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations

    Physiotherapy based on problem-solving in upper limb function and neuroplasticity in chronic stroke patients: A case series

    Get PDF
    Rationale, aims, and objectives: Upper limb recovery is one of the main concerns of stroke neurorehabilitation. Neuroplasticity might underlie such recovery, particularly in the chronic phase. The purpose of this study was to assess the effect of physiotherapy based on problem-solving in recovering arm function in chronic stroke patients and explore its neuroplastic changes. Methods: A small sample research design with a n of 3 using a pre-post test design was carried out. Neuroplasticity and function were assessed by using functional magnetic resonance imaging (during motor imagery and performance), action research arm test, motor assessment scale, and Fugl-Meyer assessment scale, at 3 sequential time periods: baseline(m0before a 4-week period without physiotherapy), pre-treatment(m1), and post-treatment(m2). Minimal clinical important differences and a recovery score were assessed. Assessors were blinded to moment assignment. Patients(1) underwent physiotherapy sessions, 50minutes, 5days/week for 4weeks. Four control subjects served as a reference for functional magnetic resonance imaging changes. Results: All patients recovered more than 20% after intervention. Stroke patients had similar increased areas as healthy subjects during motor execution but not during imagination at baseline. Consequently, all patients increased activity in the contralateral precentral area after intervention. Conclusions: This study indicates that 4weeks of physiotherapy promoted the recovery of arm function and neuroplasticity in all chronic stroke patients. Future research is recommended to determine the efficacy of this therapy.info:eu-repo/semantics/publishedVersio

    How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies

    Get PDF
    Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action

    Interplay of Hydrogen Sulfide and Nitric Oxide on the Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

    Get PDF
    We studied whether nitric oxide (NO) and hydrogen sulfide (H2S) have an interaction on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of NO and H2S on pacemaker activities were investigated by using the whole-cell patch-clamp technique and intracellular Ca2+ analysis at 30℃ in cultured mouse ICC. Exogenously applied (±)-S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, or sodium hydrogen sulfide (NaHS), a donor of H2S, showed no influence on pacemaker activity (potentials and currents) in ICC at low concentrations (10 µM SNAP and 100 µM NaHS), but SNAP or NaHS completely inhibited pacemaker amplitude and pacemaker frequency with increases in the resting currents in the outward direction at high concentrations (SNAP 100 µM and NaHS 1 mM). Co-treatment with 10 µM SNAP plus 100 µM NaHS also inhibited pacemaker amplitude and pacemaker frequency with increases in the resting currents in the outward direction. ODQ, a guanylate cyclase inhibitor, or glibenclamide, an ATP-sensitive K+ channel inhibitor, blocked the SNAP+NaHS-induced inhibition of pacemaker currents in ICC. Also, we found that SNAP+NaHS inhibited the spontaneous intracellular Ca2+ ([Ca2+]i) oscillations in cultured ICC. In conclusion, this study describes the enhanced inhibitory effects of NO plus H2S on ICC in the mouse small intestine. NO+H2S inhibited the pacemaker activity of ICC by modulating intracellular Ca2+. These results may be evidence of a physiological interaction of NO and H2S in ICC for modulating gastrointestinal motility

    Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an <it>in vitro </it>artery model.</p> <p>Methods</p> <p>A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery.</p> <p>Results</p> <p>At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W.</p> <p>Conclusion</p> <p>We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.</p

    Flood magnitude-frequency and lithologic control on bedrock river incision in post-orogenic terrain

    Get PDF
    Mixed bedrock-alluvial rivers - bedrock channels lined with a discontinuous alluvial cover - are key agents in the shaping of mountain belt topography by bedrock fluvial incision. Whereas much research focuses upon the erosional dynamics of such rivers in the context of rapidly uplifting orogenic landscapes, the present study investigates river incision processes in a post-orogenic (cratonic) landscape undergoing extremely low rates of incision (&gt; 5 m/Ma). River incision processes are examined as a function of substrate lithology and the magnitude and frequency of formative flows along Sandy Creek gorge, a mixed bedrock-alluvial stream in arid SE-central Australia. Incision is focused along a bedrock channel with a partial alluvial cover arranged into riffle-pool macrobedforms that reflect interactions between rock structure and large-flood hydraulics. Variations in channel width and gradient determine longitudinal trends in mean shear stress (&#964;b) and therefore also patterns of sediment transport and deposition. A steep and narrow, non-propagating knickzone (with 5% alluvial cover) coincides with a resistant quartzite unit that subdivides the gorge into three reaches according to different rock erodibility and channel morphology. The three reaches also separate distinct erosional styles: bedrock plucking (i.e. detachment-limited erosion) prevails along the knickzone, whereas along the upper and lower gorge rock incision is dependent upon large formative floods exceeding critical erosion thresholds (&#964;c) for coarse boulder deposits that line 70% of the channel thalweg (i.e. transport-limited erosion). The mobility of coarse bed materials (up to 2 m diameter) during late Holocene palaeofloods of known magnitude and age is evaluated using step-backwater flow modelling in conjunction with two selective entrainment equations. A new approach for quantifying the formative flood magnitude in mixed bedrock-alluvial rivers is described here based on the mobility of a key coarse fraction of the bed materials; in this case the d84 size fraction. A 350 m3/s formative flood fully mobilises the coarse alluvial cover with &#964;b200-300 N/m2 across the upper and lower gorge riffles, peaking over 500 N/m2 in the knickzone. Such floods have an annual exceedance probability much less than 10- 2 and possibly as low as 10- 3. The role of coarse alluvial cover in the gorge is discussed at two scales: (1) modulation of bedrock exposure at the reach-scale, coupled with adjustment to channel width and gradient, accommodates uniform incision across rocks of different erodibility in steady-state fashion; and (2) at the sub-reach scale where coarse boulder deposits (corresponding to &lt;i&gt;&#964;&lt;/i&gt;&lt;sub&gt;b&lt;/sub&gt; minima) cap topographic convexities in the rock floor, thereby restricting bedrock incision to rare large floods. While recent studies postulate that decreasing uplift rates during post-orogenic topographic decay might drive a shift to transport-limited conditions in river networks, observations here and elsewhere in post-orogenic settings suggest, to the contrary, that extremely low erosion rates are maintained with substantial bedrock channel exposure. Although bed material mobility is known to be rate-limiting for bedrock river incision under low sediment flux conditions, exactly how a partial alluvial cover might be spatially distributed to either optimise or impede the rate of bedrock incision is open to speculation. Observations here suggest that the small volume of very stable bed materials lining Sandy Creek gorge is distributed so as to minimise the rate of bedrock fluvial incision over time
    • …
    corecore