12 research outputs found

    INeo-Epp: A Novel T-Cell HLA Class-I Immunogenicity or Neoantigenic Epitope Prediction Method Based on Sequence-Related Amino Acid Features

    No full text
    In silico T-cell epitope prediction plays an important role in immunization experimental design and vaccine preparation. Currently, most epitope prediction research focuses on peptide processing and presentation, e.g., proteasomal cleavage, transporter associated with antigen processing (TAP), and major histocompatibility complex (MHC) combination. To date, however, the mechanism for the immunogenicity of epitopes remains unclear. It is generally agreed upon that T-cell immunogenicity may be influenced by the foreignness, accessibility, molecular weight, molecular structure, molecular conformation, chemical properties, and physical properties of target peptides to different degrees. In this work, we tried to combine these factors. Firstly, we collected significant experimental HLA-I T-cell immunogenic peptide data, as well as the potential immunogenic amino acid properties. Several characteristics were extracted, including the amino acid physicochemical property of the epitope sequence, peptide entropy, eluted ligand likelihood percentile rank (EL rank(%)) score, and frequency score for an immunogenic peptide. Subsequently, a random forest classifier for T-cell immunogenic HLA-I presenting antigen epitopes and neoantigens was constructed. The classification results for the antigen epitopes outperformed the previous research (the optimal AUC=0.81, external validation data set AUC=0.77). As mutational epitopes generated by the coding region contain only the alterations of one or two amino acids, we assume that these characteristics might also be applied to the classification of the endogenic mutational neoepitopes also called “neoantigens.” Based on mutation information and sequence-related amino acid characteristics, a prediction model of a neoantigen was established as well (the optimal AUC=0.78). Further, an easy-to-use web-based tool “INeo-Epp” was developed for the prediction of human immunogenic antigen epitopes and neoantigen epitopes

    Recent advances in the development and applications of biomass-derived carbons with uniform porosity

    No full text

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore