635 research outputs found

    Time dependent thermal lensing measurements of V–T energy transfer from highly excited NO2

    Full text link
    The time dependent thermal lensing technique has been used to measure the vibrational relaxation of NO2 (initially excited at 21 631 cm−1) by Ar, Kr, and Xe. The energy transfer analysis was carried out in terms of 〈〈ΔE〉〉, the bulk average energy transferred per collision. This quantity was found to have a very strong dependence on vibrational energy, with a marked increase at energies greater than about 10 000 cm−1, where several electronic excited states (2B2, 2B1, and 2A2) mix with the ground state (2A1). This effect may be due to large amplitude vibrational motions associated with the coupled electronic states. Even at low energies, deactivation is faster than in other triatomic systems, probably because NO2 is an open shell molecule and electronic curve crossings provide efficient pathways for vibrational deactivation. The V–T rate constant for deactivation of NO2(010) by argon is estimated to be (5.1±1.0)×10−14 cm3 s−1. Results obtained for NO@B|2–NO2 collisions gave 〈〈ΔE〉〉 values in good agreement with literature results from fluorescence quenching experiments, indicating that V–T may be more important than V–V energy transfer in the quenching process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70683/2/JCPSA6-92-8-4793-1.pd

    Itk Negatively Regulates Induction of  T Cell Proliferation by CD28 Costimulation

    Get PDF
    CD28 is a cell surface molecule that mediates a costimulatory signal crucial for T cell proliferation and lymphokine production. The signal transduction mechanisms of CD28 are not well understood. Itk, a nonreceptor protein tyrosine kinase specifically expressed in T cells and mast cells, has been implicated in the CD28 signaling pathway because of reports that it becomes phosphorylated on tyrosines and associates with CD28 upon cross-linking of the cell surface molecule. To determine whether Itk plays a functional role in CD28 signaling, we compared T cells from Itk-deficient mice and control mice for their responses to CD28 costimulation. T cells defective in Itk were found to be fully competent to respond to costimulation. Whereas the CD3-mediated proliferative response was severely compromised in the absence of Itk, the calcineurin-independent CD28-mediated response was significantly elevated when compared with cells from control animals. The augmented proliferation was not due to increased production of interleukin-2. The results suggest that Itk has distinct roles in the CD3 versus the CD28 signaling pathways. By negatively regulating the amplitude of signaling upon CD28 costimulation, Itk may provide a means for modulating the outcome of T cell activation during development and during antigen-driven immune responses

    Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure.

    Get PDF
    BACKGROUND & AIMS: Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86), is a negative regulator of T-cell activation. We collected T cells from patients with ALF and investigated whether inhibitory signals down-regulate adaptive immune responses in patients with ALF. METHODS: We collected peripheral blood mononuclear cells from patients with ALF and controls from September 2013 through September 2015 (45 patients with ALF, 20 patients with acute-on-chronic liver failure, 15 patients with cirrhosis with no evidence of acute decompensation, 20 patients with septic shock but no cirrhosis or liver disease, and 20 healthy individuals). Circulating CD4+ T cells were isolated and analyzed by flow cytometry. CD4+ T cells were incubated with antigen, or agonist to CD3 and dendritic cells, with or without antibody against CTLA4; T-cell proliferation and protein expression were quantified. We measured levels of soluble B7 molecules in supernatants of isolated primary hepatocytes, hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood samples from patients with ALF had a higher proportion of CD4+ CTLA4+ T cells than controls; patients with infections had the highest proportions. CD4+ T cells from patients with ALF had a reduced proliferative response to antigen or CD3 stimulation compared to cells from controls; incubation of CD4+ T cells from patients with ALF with an antibody against CTLA4 increased their proliferative response to antigen and to CD3 stimulation, to the same levels as cells from controls. CD4+ T cells from controls up-regulated expression of CTLA4 after 24-48 hours culture with sera from patients with ALF; these sera were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+ T cells from patients with ALF have increased expression of CTLA4 compared to individuals without ALF; these cells have a reduced response to antigen and CD3 stimulation. We found sera of patients with ALF and from mice with liver injury to have high concentrations of soluble B7, which up-regulates CTLA4 expression by T cells and reduces their response to antigen. Plasma exchange reduces levels of B7 in sera from patients with ALF and might be used to restore antimicrobial responses to patients

    Breakpoints in immunoregulation required for Th1 cells to induce diabetes

    Get PDF
    We describe a novel TCR-transgenic mouse line, TCR7, where MHC class II-restricted, CD4+ T cells are specific for the subdominant H-2b epitope (HEL74-88) of hen egg lysozyme (HEL), and displayed an increased frequency in the thymus and in peripheral lymphoid compartments over that seen in non-transgenic littermate controls. CD4+ T cells responded vigorously to HEL or HEL74-88 epitope presented on APC and could develop into Th1 or Th2 cells under appropriate conditions. Adoptive transfer of TCR7 Ly5.1 T cells into Ly5.2 rat insulin promoter (RIP)-HEL transgenic recipient hosts did not lead to expansion of these cells or result in islet infiltration, although these TCR7 cells could expand upon transfer into mice expressing high levels of HEL in the serum. Islet cell infiltration only occurred when the TCR7 cells had been polarized to either a Th1 or Th2 phenotype prior to transfer, which led to insulitis. Progression from insulitis to autoimmune diabetes only occurred in these recipients when Th1 but not Th2 TCR7 cells were transferred and CTLA-4 signaling was simultaneously blocked. These findings show that regulatory pathways such as CTLA-4 can hold in check already differentiated autoreactive effector Th1 cells, to inhibit the transition from tolerance to autoimmune diabetes.Schering Plough Research Institute, NJ, and then continued by the Medical Research Council, U
    corecore