516 research outputs found

    Ludington Pumped Storage Project Lake Front Model: Parts I-II

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154167/1/39015099114954.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154167/2/39015099115100.pd

    Evidence that stimulation of gluconeogenesis by fatty acid is mediated through thermodynamic mechanisms

    Get PDF
    AbstractWe have studied the stimulatory effects of palmitate on the rate of glucose synthesis from lactate in isolated hepatocytes. Control of the metabolic flow was achieved by modulating the activity of enolase using graded concentrations of fluoride. Unexpectedly, palmitate stimulated gluconeogenesis even when enolase was rate-limiting. This stimulation was also observed when the activities of phosphoenolpyruvate carboxykinase and aspartate aminotransferase were modulated using graded concentrations of quinolinate and aminooxyacetate, respectively. Linear force-flow relationships were found between the rate of gluconeogenesis and indicators of cellular energy status (i.e. mitochondrial membrane and redox potentials and cellular phosphorylation potential). These findings suggest that the fatty acid stimulation of glucose synthesis is in part mediated through thermodynamic mechanisms

    Real World Interpretations of Quantum Theory

    Full text link
    I propose a new class of interpretations, {\it real world interpretations}, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They give a mathematical characterisation of the different possible worlds arising in an evolving closed quantum system, in which each possible world corresponds to a (generally mixed) evolving quantum state. In a realistic model, the states corresponding to different worlds should be expected to tend towards orthogonality as different possible quasiclassical structures emerge or as measurement-like interactions produce different classical outcomes. However, as the worlds have a precise mathematical definition, real world interpretations need no definition of quasiclassicality, measurement, or other concepts whose imprecision is problematic in other interpretational approaches. It is natural to postulate that precisely one world is chosen randomly, using the natural probability distribution, as the world realised in Nature, and that this world's mathematical characterisation is a complete description of reality.Comment: Minor revisions. To appear in Foundations of Physic

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films

    Get PDF
    We perform molecular dynamics simulations of an idealized polymer melt surrounding a nanoscopic filler particle to probe the effects of a filler on the local melt structure and dynamics. We show that the glass transition temperature TgT_g of the melt can be shifted to either higher or lower temperatures by appropriately tuning the interactions between polymer and filler. A gradual change of the polymer dynamics approaching the filler surface causes the change in the glass transition. We also find that while the bulk structure of the polymers changes little, the polymers close to the surface tend to be elongated and flattened, independent of the type of interaction we study. Consequently, the dynamics appear strongly influenced by the interactions, while the melt structure is only altered by the geometric constraints imposed by the presence of the filler. Our findings show a strong similarity to those obtained for ultra-thin polymer films (thickness â‰Č100\lesssim 100 nm) suggesting that both ultra-thin films and filled-polymer systems might be understood in the same context

    Failing boys and moral panics: perspectives on the underachievement debate

    Get PDF
    The paper re-examines the underachievement debate from the perspective of the ‘discourse of derision’ that surrounds much writing in this area. It considers the contradictions and inconsistencies which underpin much of the discourse – from a reinterpretation of examination scores, to the conflation of the concepts of ‘under’ and ‘low’ achievement and finally to the lack of consensus on a means of defining and measuring the term underachievement. In doing so, this paper suggests a more innovative approach for understanding, re-evaluating and perhaps rejecting the notion of underachievement

    Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order

    Get PDF
    The influence of relativistic contributions to elastic electron deuteron scattering is studied systematically at low and intermediate momentum transfers (Q2≀30Q^2\leq 30 fm−2^{-2}). In a (p/M)(p/M)-expansion, all leading order relativistic π\pi-exchange contributions consistent with the Bonn OBEPQ models are included. In addition, static heavy meson exchange currents including boost terms and lowest order ÏÏ€Îł\rho\pi\gamma-currents are considered. Sizeable effects from the various relativistic two-body contributions, mainly from π\pi-exchange, have been found in form factors, structure functions and the tensor polarization T20T_{20}. Furthermore, static properties, viz. magnetic dipole and charge quadrupole moments and the mean square charge radius are evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for publication in Phys.Rev.C Details of changes: (i) The notation of the curves in Figs. 1 and 2 have been clarified with respect to left and right panels. (ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a corresponding reference [48] (iii) At the end of the text we have added a paragraph concerning the quality of the Bonn OBEPQ potential

    Spontaneous Magnetization of the O(3) Ferromagnet at Low Temperatures

    Full text link
    We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) →\to O(2). The analysis is performed within the perspective of nonrelativistic effective Lagrangians, where the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant framework (chiral perturbation theory), where loop graphs are suppressed by two powers of momentum, loops involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the low-temperature expansion for the partition function are calculated up to order p10p^{10}. In agreement with Dyson's pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the magnon-magnon interaction starts manifesting itself only at order T4T^4. The striking difference with respect to the low-temperature properties of the O(3) antiferromagnet is discussed from a unified point of view, relying on the effective Lagrangian technique.Comment: 23 pages, 4 figure

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Search for the lepton-flavor-violating decays Bs0→e±Ό∓ and B0→e±Ό∓

    Get PDF
    A search for the lepton-flavor-violating decays Bs0→e±Ό∓ and B0→e±Ό∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions at √s=7  TeV, collected by the LHCb experiment. The observed number of Bs0→e±Ό∓ and B0→e±Ό∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±Ό∓)101  TeV/c2 and MLQ(B0→e±Ό∓)>126  TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
    • 

    corecore