212 research outputs found

    Adaptive constraints for feature tracking

    Get PDF
    In this paper extensions to an existing tracking algorithm are described. These extensions implement adaptive tracking constraints in the form of regional upper-bound displacements and an adaptive track smoothness constraint. Together, these constraints make the tracking algorithm more flexible than the original algorithm (which used fixed tracking parameters) and provide greater confidence in the tracking results. The result of applying the new algorithm to high-resolution ECMWF reanalysis data is shown as an example of its effectiveness

    Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers

    Get PDF
    \ua9 2022 The Authors. Experimental Dermatology published by John Wiley & Sons Ltd.Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments

    Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces

    Full text link
    We present trends in the multilayer relaxations of several vicinals of Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic structure calculations are based on density functional theory in the local density approximation with norm-conserving, non-local pseudopotentials in the mixed basis representation. While relaxations continue for several layers, the major effect concentrates near the step and corner atoms. On all surfaces the step atoms contract inwards, in agreement with experimental findings. Additionally, the corner atoms move outwards and the atoms in the adjacent chain undergo large inward relaxation. Correspondingly, the largest contraction (4%) is in the bond length between the step atom and its bulk nearest neighbor (BNN), while that between the corner atom and BNN is somewhat enlarged. The surface atoms also display changes in registry of upto 1.5%. Our results are in general in good agreement with LEED data including the controversial case of Cu(511). Subtle differences are found with results obtained from semi-empirical potentials.Comment: 21 pages and 3 figure

    Sculpting the shape of semiconductor heteroepitaxial islands: from dots to rods

    Get PDF
    In the Ge on Si model heteroepitaxial system, metal patterns on the silicon surface provide unprecedented control over the morphology of highly ordered Ge islands. Island shape including nanorods and truncated pyramids is set by the metal species and substrate orientation. Analysis of island faceting elucidates the prominent role of the metal in promoting growth of preferred facet orientations while investigations of island composition and structure reveal the importance of Si-Ge intermixing in island evolution. These effects reflect a remarkable combination of metal-mediated growth phenomena that may be exploited to tailor the functionality of island arrays in heteroepitaxial systems.Comment: accepted- Physical Review Letters; 12 pages, 4 figure

    Operational forecasting of daily summer maximum and minimum temperatures in the Valencia Region

    Get PDF
    Extreme-temperature events have a great impact on human society. Thus, knowledge of summer temperatures can be very useful both for the general public and for organizations whose workers operate in the open. An accurate forecasting of summer maximum and minimum temperatures could help to predict heatwave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The objective of this work is to evaluate the skill of the regional atmospheric and modelling system (RAMS) model in determining daily summer maximum and minimum temperatures in the Valencia Region. For this, we have used the real-time configuration of this model currently running at the Centro de Estudios Ambientales de Mediterráneo Foundation. This operational system is run twice a day, and both runs have a 3-day forecast range. To carry out the verification of the model in this work, the information generated by the system has been broken into individual simulation days for a specific daily run of the model. Moreover, we have analysed the summer forecast period from 1 June to 31 August for 2007, 2008, 2009 and 2010. The results indicate good agreement between observed and simulated maximum temperatures, with RMSE in general near 2 °C both for coastal and inland stations. For this parameter, the model shows a negative bias around −1.5 °C in the coast, while the opposite trend is observed inland. In addition, RAMS also shows good results in forecasting minimum temperatures for coastal locations, with bias lower than 1 °C and RMSE below 2 °C. However, the model presents some difficulties for this parameter inland, where bias higher than 3 °C and RMSE of about 4 °C have been found. Besides, there is little difference in both temperatures forecasted within the two daily RAMS cycles and that RAMS is very stable in maintaining the forecast performance at least for three forecast days
    corecore