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ABSTRACT

In this paper extensions to an existing tracking algorithm are described. These extensions implement adaptive
tracking constraints in the form of regional upper-bound displacements and an adaptive track smoothness con-
straint. Together, these constraints make the tracking algorithm more flexible than the original algorithm (which
used fixed tracking parameters) and provide greater confidence in the tracking results. The result of applying
the new algorithm to high-resolution ECMWF reanalysis data is shown as an example of its effectiveness.

1. Introduction

The objective identification and tracking of atmo-
spheric features, together with the statistical analysis of
the track ensembles, provide a useful method for de-
termining the characteristics of these features, devel-
oping climatologies for them, and studying their sea-
sonal and interannual variability. Features in this context
can be anything from regions surrounding highs, lows,
or anomalies (where seasonal or longer term means are
removed) in model fields, or cloud systems identified
in satellite imagery.

Several automated tracking systems have been de-
veloped in the past tailored to specific applications. For
example, most model-based applications have been of
the symbolic token matching type, where a small num-
ber of representative points are determined, usually the
maxima or minima of the prognostic field. These points
are linked together based on some criteria and/or con-
straints suitable for the type of motion expected (Murray
and Simmonds 1991; König et al. 1993; Hodges 1995).
Either a simple nearest neighbor approach is used, or
more sophisticated techniques based on the optimization
of some cost function for the motion of all systems are
used. In general all techniques have some drawbacks.
The nearest neighbor approach is best suited to data that
admit a small number of systems per frame; more de-
tailed scenes can lead to problems of association, that
is, the nearest neighbor might not be correct. Nearest
neighbor techniques can also be dependent on the data
ordering at each time step. An example of this is shown
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in Fig. 1, where Fig. 1a is obtained using a nearest
neighbor search for a certain indexing of the points in
each frame, while for Fig. 1b the indexing in frame 4
has been swapped, and for Fig. 1c the indexing in frame
3 has been swapped as well. Finally, Fig. 1d is the result
of applying a cost function optimization algorithm using
either Fig. 1b or Fig. 1c as initialization.

Optimization-based techniques are generally better
for more complicated scenes with many systems and are
less dependent on the data ordering. They are also in-
dependent of the initial correspondence, that is, when
systems first appear, as long as the optimization proceeds
forward and backward in time so that exchanges of
points between tracks can take place at the start of the
tracks, subject to the token matching criteria used. How-
ever, this type of algorithm can still make mistakes,
particularly in very complicated situations or when the
temporal sampling is insufficient.

For cloud motion applications, the approach has pre-
dominately been to use a region matching technique
such as cross correlation (Leese and Novak 1971;
Schmetz et al. 1993) or to search for overlap in con-
secutive frames (Williams and Houze 1987; Arnaud et
al. 1992). However, there is no reason why the symbolic
token matching approach cannot be used for the appli-
cation to cloud system tracking provided a suitable
means of determining the feature points is available. For
example, Endlich et al. (1971) have used the window
brightness temperature minima to track cloud systems
to determine cloud motion winds, while Hodges has
explored two approaches to track larger-scale systems
such as mesoscale cloud systems (MCS). The first ap-
proach of Hodges has used minima in the smoothed
window brightness temperature field of Meteosat
(Hodges and Thorncroft 1997), while the second ap-
proach has used the smoothed shape of the system to
determine suitable feature points (Hodges 1998).
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FIG. 1. Importance of feature point ordering on nearest neighbor
searches: (a) result of nearest neighbor search for a particular feature-
point indexing, (b) same as (a) except indexing at frame 4 swapped,
(c) same as (b) except indexing swapped at frame 3, (d) result of
cost function optimization using either (b) or (c) as initialization.

The system developed for tracking and statistical
analysis as described by Hodges (1995, 1996) is of gen-
eral applicability to problems in spherical geometry (in-
cluding subregions). The tracking part of this system is
based on the original algorithm of Salari and Sethi
(1990) adapted to work on a spherical domain (Hodges
1995). This paper reports on further enhancements to
the algorithm, which make it more versatile and appli-
cable to a wider range of data.

2. Constraints and tracking algorithms

All tracking algorithms impose constraints in some
form both to exclude unlikely matches and to reduce
the combinatorial search for matches. Fixed constraints
are generally acceptable for regional studies or for stud-
ies using low-resolution data with few features. How-
ever, for global studies using high-resolution data, which
may have clutter and many features, a more flexible
application of constraints is useful. This will both reduce
the amount of checking of likely matches and further
exclude unlikely matches, which become more preva-
lent in higher-resolution data from both models and sat-
ellites. For example, synoptic-scale features in the Trop-
ics will generally move more slowly and undergo pos-
sibly large changes in velocity (speed and/or direction)
in a time step, due to their actual motion, measurement
inaccuracy, for example, in the geo-referencing of sat-
ellite data, or due to error in data assimilation if ob-
servational data have been incorporated into a model.
Systems in the midlatitude storm tracks will generally
move much more quickly. For these fast-moving sys-
tems a large change in velocity (in a particular direction)
is unlikely, although slow-moving systems in the storm
tracks may have similar motion characteristics to a slow-
moving tropical system, that is, they may vacillate in
position. Here, discussion of large changes in velocity
is contingent on the temporal sampling interval. For
fast-moving systems sampled infrequently, large chang-

es in velocity as determined by a tracking algorithm are
unlikely to carry much confidence. Indeed if the tem-
poral sampling of a field is very poor and the types of
system that are to be tracked have a large velocity then
the confidence in the determined tracks is likely to be
low for all determined tracks, more so in a high-reso-
lution field with many systems. There is also the lik-
lihood of track aliasing if the time step is too large,
where a coherent track is produced from essentially
short-lived systems.

The simplest constraint is an upper-bound displace-
ment, which all tracking algorithms impose in some
form. In this paper the implementation of regionally
varying upper-bound displacements is described for the
algorithm described by Hodges (1995) for tracking on
the sphere. Other types of constraints are often imposed
on the tracking in the form of velocity constraints or
track smoothness constraints. The former can be im-
posed in several ways, for example, as a compatability
constraint (Wu 1995) where neighboring features have
similar velocities. This has been applied in a cloud mo-
tion wind scheme where there may be several features
within a small region to compare. Alternatively, mean
(climatological) wind speeds may be used, if these are
available, to impose some directional constraint as well
as displacement. The track smoothness constraint differs
from these velocity constraints in that it deals with
changes in velocity rather than absolute velocities. As
track smoothness is related to changes in velocity it must
be measured over several frames or time steps. A min-
imum of three frames is required to estimate changes
in velocity, although more can be used especially if
changes in acceleration are used as well. The algorithm
described by Hodges (1995) uses this type of constraint.
This paper will describe how the track smoothness con-
straint can be applied adaptively along with the region-
ally varying upper-bound displacement constraint al-
ready mentioned. Essentially, the track smoothness con-
straint is allowed to vary with the local mean separation
distance on a track, so that points that are close together
on a track lead to a less restrictive constraint on the
track smoothness while points that are far apart lead to
a stricter constraint.

3. Modified algorithm

The original tracking algorithm, of Saleri and Sethi
(1990) has been modified by Hodges (1995) to work on
a spherical domain for application to geo-referenced
model data. The new modifications described in this
paper concern the implementation of adaptive tracking
constraints in response to applications that are closer to
‘‘reality.’’ Examples are the identification and tracking
of midlatitude storms, tropical easterly waves, monsoon
depressions and tropical cyclones in European Centre
for Medium-Range Weather Forecasting (ECMWF) Re-
analysis (ERA) data, and the identification and tracking
of tropical MCSs using satellite imagery. Both of these
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sets of data will present a challenge to most tracking
algorithms due to the amount of detail, some of which
can be filtered or smoothed to simplify, but which will
still retain a large number of possible features per frame
in the form of genuine features and clutter.

The basis of the algorithm is the optimization of a
cost function constructed from local track smoothness
measures, with the smoothness being measured in terms
of changes in direction and speed. The smoothness mea-
sure thus requires a minimum of three consecutive
frames. A set of tracks is initialized, subject to the con-
straints, from the identified feature points for the re-
quired time sequence. Incomplete tracks are padded out
with ‘‘phantom’’ feature points so that all tracks have
the same number of points and span the length of the
time series. The optimization swaps points on the tracks
to give the greatest gain in smoothness and proceeds

both forward and backward in time to ensure that there
is no feature point ordering dependence in the final re-
sult.

To implement the adaptive constraints, several aspects
of the original algorithm need to be changed and the
constraints specified. The cost function to be minimized
(to produce the optimal smoothness) is given by

m n21

k21 k k11J 5 D (P , P , P ), (1)O O i i i
i51 k52

where D( , , ) is called the local deviation, atk21 k k11P P Pi i i

time step k, with m the total number of tracks and n the
total number of frames or time steps. Also, is thekPi

position vector in Cartesian space (a point on the sphere
is represented as a unit vector in Cartesian space) for a
feature point on track i at time step k. The local deviation
in the new algorithm is now defined as

k21 k k110 if P is a phantom feature point, and P and P are real or phantom;i i i
k21 k k11 k21 k k11 k21 k k11D (P , P , P ) 5 c(P , P , P ) if P , P and P are real feature points;i i i i i i i i i

C otherwise,
(2)

where c( , , ) is a measure of the change ofk21 k k11P P Pi i i

speed and direction over three time steps (see below)
and C is now a global upper bound on c that satisfies

sup (k21,k) (k ,k11)C $ c (d , d ), (3)max i i(k21,k) (k,k11)d , d ∈[0,D]
i i

where cmax( , ) is the upper-bound track(k21,k) (k,k11)d di i

smoothness constraint as a function of the mean dis-
placement over three frames, and where 5(k21,k)di

\ \ is the displacement distance between the pointk21 kP Pi i

and and now is defined ask21 kP Pi i

k k11 k k11\P P \ if P and P are both true feature points,i i p i ik k11\P P \ 5 (4)i i 5D otherwise.

This is dependent on a suitable norm \ \p (thisk k11P Pi i

will be the geodesic norm for a spherical domain p 5
g, and the Euclidean norm p 5 e for a Cartesian domain
with no surface constraints). The parameter D is a global
upper bound on displacement, that is,

( j )D 5 max (d ); N 5 number of regions, (5)max
j51,N

where is the upper-bound displacement for region j.(j)dmax

The function c( , , ) is now specified as:k21 k k11P P Pi i i

(k21,k) (k ,k11)k21 k k11 ˆ ˆc(P , P , P ) 5 0.5w (1 2 T · T )i i i 1 i i

k21 k k k11 1/22[\P P \ \P P \]i i i i1 w 1 2 ,2 k21 k k k111 2[\P P \ 1 \P P \]i i i i

(6)

where the first term measures directional similarity and
the second term measures speed similarity. The unit
vector represents the direction from point(k21,k) k21T̂ Pi i

to point with \ \ as defined above. Bothk k21 kP P Pi i i

and \ \ will depend on the domain of the(k21,k) k21 kT̂ P Pi i i

application, here taken as a spherical domain (see Hodg-
es 1995 for further details). Note the addition of the
factor 0.5 in the first term compared with the definition
in previous descriptions (Salari and Sethi 1990; Hodges
1995). This ensures that provided w1 1 w2 5 1, then
c( , , ) ∈ [0, 1] for all changes in directionk21 k k11P P Pi i i

(| · | # 1 ⇒ 0 # 1 2 · # 2)(k21,k) (k,k11) (k21,k) (k,k11)ˆ ˆ ˆ ˆT T T Ti i i i

and speed.
It only remains to specify the form the adaptive con-

straints take and to outline the modified algorithm that
implements them. The upper-bound displacements are
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specified by choosing the extent of the regions. On a
sphere this will typically be in terms of lat–long boxes
or as zones. For example, for a global study of synoptic-
scale systems using relative vorticity, the regions might
be specified as zones, one for the Tropics and one each
for the Northern and Southern Hemisphere extratropics

(more could be specified if required). An upper-bound
displacement for each region is then assigned. In the
example just mentioned, this would result in a lower
value for the Tropics than for the extratropics. The var-
iable upper bound displacement function is defined as

k21 kD if either P , P are phantom points.i i
k21 k ( j ) k21 kd (P , P ) 5 d if both P , P ∈ region j. (7)max i i max i i

j l k21 k0.5(d 1 d ) if P ∈ region j and P ∈ region l or vice versa. max max i i

More complex functions might be designed, for ex-
ample, a continuous function that increases linearly
from the equator to the poles might be used, but the
function described above is probably the simplest and
easiest to apply given general regions with boundaries
in longitude as well as latitude.

The specification of the adaptive track smoothness
constraint is less straightforward as it will depend to
some extent on the perception of the type of motion
present in the data. In practice, in the absence of clutter
and ambiguity over matching in consecutive frames, that
is, when there is only one possible match, then the best
match will be the nearest neighbor in the next frame
irrespective of track smoothness. However, this does not
necessarily mean it is a correct match if the change in
velocity (speed and direction) is unrealistic for the type
of systems being tracked. It is more likely to be correct,
irrespective of change in velocity, if the points are close
together either because the system is slow moving or

because the temporal sampling rate is high. On the other
hand, for widely separated points, either because the
system is fast moving or because the sampling rate is
low (but within the upper-bound displacement), we will
have a low confidence in large changes in velocity, and
more particularly, in direction. For example, we would
not expect a midlatitude storm moving within the storm
track at a speed representative of such systems to double
back on itself over the period of three time steps. On
the other hand, we might expect a system that is vac-
illating to ‘‘wobble’’ about in position and maybe to
have a large relative change in speed. So a less restric-
tive track smoothness constraint is required if the system
is slow moving and a more restrictive constraint is re-
quired if it is fast moving. The form of the adaptive
constraint chosen is shown in Fig. 2.

The function actually used for the upper-bound track
smoothness is defined as

(k21,k) (k ,k11) k21 k k11c (d , d ) if (P , P , P ) are all real feature points.max i i ik21 k k11D (P , P , P ) 5 (8)max i i i 5C otherwise.

As with the variable upper-bound displacement, any
suitable function can be used but here the piecewise
linear function shown in Fig. 2 which is relatively sim-
ple and cheap to compute is used. This form for the
adaptive smoothness has a large value for small average
displacement distances over three time steps and de-
creases piecewise linearly to a smaller value for large
average displacement distances over three time steps in
accordance with the discussion above.

The cost function is minimized locally in time subject
to the constraints using an adapted form of the modified
Greedy exchange algorithm (MGEA) proposed by Sethi
and Jain (1987) and adapted for incomplete tracks by
Saleri and Sethi (1990). This is described in the next
section.

4. Operation of the MGEA with adaptive
constraints

The MGEA is initialized by first constructing a set
of tracks from the available feature points using a near-
est neighbor search and subject to the regional upper-
bound displacements. Incomplete tracks are padded out
with phantom feature points. In the original algorithm
a set of tracks was required to be initialized with only
phantom points to facilitate the exchange of features for
tracks exceeding the upper-bound track smoothness, so
that all final tracks after the optimization of the cost
function satisfy the smoothness constraint. The new al-
gorithm requires substantially fewer of these since a new
step is introduced that processes the tracks before each
forward or backward iteration to ensure that none of
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FIG. 2. Schematic of a piecewise linear adaptive track smoothness
constraint as a function of local mean displacement distance [( ,k21Pi

, ) all real feature points].k k11P Pi i

FIG. 3. Example of tracks with ambiguous track smoothness.

them exceed the local track smoothness constraint, ei-
ther as a fixed constraint applied globally or as an
adaptive constraint. Tracks are broken up if the con-
straints are violated anywhere. This step is essential
for applying the adaptive track smoothness constraint,
but also has the added benefit in that the optimization
process is generally faster for fixed constraints, al-
though for the adaptive constraints the extra function
evaluations can slow down the optimization. The op-
timization is iterative, proceeding both forward and
backward in time and swapping those pairs of points
on tracks that provide the greatest gain in track smooth-
ness subject to the constraints.

An outline of the MGEA with adaptive constraints
is described in appendix A, in a similar form to the
original Sethi and Jain (1987) algorithm so that it is
apparent how the new aspects of the algorithm fit into
the original algorithm.

In practice the algorithm can get stuck when in fact
it should have terminated. This can occur when there
is a conflict between a forward and backward iteration
on a small number of tracks. This will depend on the
values set for the weights w1 and w 2 in the local
smoothness function. An example of this is shown in
Fig. 3. To ensure a termination occurs, a maximum
number of forward and backward iterations is speci-
fied, if the algorithm exceeds this limit it terminates
with one final forward iteration. In practice most of
the work is done in the first two forward and backward
iterations, so the limit is usually set at 3.

As mentioned in the introduction this algorithm is
not perfect and will make mistakes; in fact it can con-
struct tracks that satisfy the constraints and that rep-
resent the minimum of the cost function but that are
incorrect. The flexibility of adaptive constraints can
help to reduce the mistakes provided the variation in

the constraints is chosen wisely. This highlights the
point that some form of sensitivity study should be
performed on the constraints before the final process-
ing is performed. If observational data exist for the
features of interest, then these can be used as a basis
for choosing the constraints.

There is one last point concerning long time series.
Because the optimization process can be time consum-
ing if there are a large number of features per time
step, the implementation of the algorithm is such that
it can be applied to overlapping sections of the time
series. Tracks from the sections are then spliced to-
gether to form the final track ensemble for the whole
time series. In previous use, the overlap was set at two
time steps (two time steps in common between two
sections), but it has since been noticed that this can
lead to incorrect matches when the tracks are spliced
together. The overlap should be at least three time steps
to avoid this problem.

5. Application to the ECMWF reanalysis

To provide an example of the algorithm in action,
it has been applied to data from the ERA project (Gib-
son et al. 1997). The ERA data are based on the in-
tegration of the integrated forecast system with obser-
vational data assimilated using optimal interpolation.
The field chosen for this example is the relative vor-
ticity at 850 hPa. The data is provided at a spectral
resolution of T106 and time step of 6 h, and has been
interpolated to pressure levels. The vorticity field at
this resolution has a large amount of detail representing
a large range of spatial and temporal scales, relating
to both synoptic systems as well as higher-frequency
transients and smaller spatial scales. It is this amount
of detail that makes the field one of the most chal-
lenging to study with tracking systems as there is much
scope for making mistakes at least at the temporal sam-
pling rate of 6 h (there are likely to be several possible
matches within the chosen search radius). Filtering
both in space and time can remove some of this am-
biguity before the tracking system is applied, but for
this example no filtering has been performed to see
how the new system performs for such complicated
situations. The vorticity is also the best field for look-
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TABLE 1. Adaptive constraints used for the example. The last row
indicates the allowed maximum speed in each zone.

Zonal upper-bound displacements

Zones
Lower (deg lat)
Upper (deg lat)
d (deg)j

max

Max. speed (m s21)

1
290.0
230.0

5.0
25

2
230.0
220.0

4.0
20

3
220.0

20.0
3.5

18

4
20.0
30.0

4.0
20

5
30.0
90.0

5.0
25

Adaptive track smoothness

d̄(deg)
Cmax (d̄ )

0.0
1.0

1.0
1.0

2.0
0.2

5.0
0.08

.5.0
0.08

ing at tropical activity like easterly waves (Reed et al.
1988) and for tropical activity like monsoon depres-
sions and tropical cyclones. The example presented
below is for the period of May–September from 1989
and for the region of the Northern Hemisphere Indian
Ocean and western Pacific. The aim is to identify and
track monsoon depressions over India and the impor-
tant systems in the western Pacific, that is, tropical
storms. The identification starts by applying a thresh-
old of 3.0 3 1025 s21 so that all data above this thresh-
old are retained and searched for maxima (cyclonic
systems). This is a somewhat higher value than is usu-
ally used at lower resolutions, but at this higher res-
olution the systems of interest will appear more intense
than, say, at T42 resolution. However, a substantial
amount of clutter is still retained, particularly around
the orography so the choice of the tracking parameters
must be chosen carefully. This threshold is suitable for
the monsoon depressions and tropical storms that we
are interested in; however, this is likely to need re-
ducing for easterly waves that are much weaker sys-
tems, with the consequence that a lot more clutter
(short-lived systems) will be present. Easterly waves
present problems in another way in data of this type
in that they have the propensity to develop multiple
centers that make it much more difficult to obtain co-
herent tracks. This happens much less often in more
intense systems, making them easier to track. The ap-
plication to easterly waves is still under consideration,
but it has been found that reducing the resolution by
smoothing onto a lower-resolution grid makes the
tracking of the synoptic-scale waves easier.

The tracking parameters that have been used are w1

5 0.2, W 2 5 0.8 for the local smoothness measure
weights. The adaptive constraints have been chosen
following a limited sensitivity study and are specified
in Table 1. The guide to choosing these parameters is
that they should be as restrictive as is compatible with
the type of system to be tracked, taking account of
measurement error in the data. The choice of the pa-
rameters in Table 1 satisfies this criteria for the tropical
systems that are of interest here and for the time sam-
pling of the data (6 h).

The values for the upper-bound displacements can
be interpreted as a maximum speed. The values for the

maximum allowed speed in each zone are given in
Table 1. The values of the track smoothness constraint
can be interpreted in terms of the maximum allowed
change in direction (for fixed speed) or change in speed
(for fixed direction). Of course, for changes in both
direction and speed neither maximum is attained. For
example, for an average displacement over three
frames of less than or equal to 1.08 (geodesic) the max-
imum allowed track smoothness is unity, which means
all changes in speed and direction are allowed subject
to this average displacement. On the other hand, for
average displacements greater than 58 (geodesic) the
maximum allowed track smoothness is 0.08. If there
is no change in speed this is equivalent to a maximum
allowed change in direction of 808, if there is no change
in direction this is equivalent to a change in speed of
60%. The form of the constraint on track smoothness
decreases from the former to the latter as average dis-
placement distance increases. These values were ac-
ceptable for the application here. Ideally the constraint
values can be chosen from observations if available,
although care must be taken to ensure that the obser-
vations are numerous enough to provide statistically
reliable values. In practice, although we find observed
system velocities are a good guide for setting the con-
straints, there are always those systems that will not
satisfy the constraints resulting in a tracking error. This
is particularly the case with ERA at high resolution
using the vorticity field where limitations in the ob-
served data that are assimilated into the model inte-
gration may cause very sudden changes in motion that
may not be typical of the actual systems of interest;
an insufficient sampling rate can make the problem
worse. This sudden change in motion may manifest
itself as both a large change in displacement distance
and/or a large change in direction, so to allow for this
in the tracking constraints by relaxing them sufficiently
may result in errors occuring elsewhere. Inevitably
there is a trade-off in choosing the constraints such
that the majority of systems are tracked correctly at
the expense that some systems undergoing large chang-
es in velocity are incorrectly tracked. For a less clut-
tered field or for a larger data sampling rate some re-
laxation of the track smoothness constraints is possible
so that the systems that do exhibit these large changes
in velocity are tracked correctly. This leads back to the
idea of applying some filtering to remove the clutter;
certainly reducing the resolution, for example, from
T106 to T42 (synoptic-scale systems are still resolved),
allows the constraints to be relaxed and the tracking
to make fewer mistakes. The constraints can also be
better chosen if the focus is on particular types of sys-
tems and/or particular geographical regions. For ex-
ample, tropical storms such as typhoons and hurricanes
are relatively large-scale, intense, tropical phenomena
predominately found in the oceanic regions. Focusing
just on this type of system it is found that the con-
straints can be relaxed considerably. However, for the
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FIG. 5. The tracks of observed tropical storms and monsoon depressions for May–Sep 1989. Observations
are 6 hourly for the western Pacific tropical storms and 12 hourly for the monsoon depressions. The observed
monsoon data are available only for the mature phase of the system from the Mausam (Gupta et al. 1990)
journal.

monsoon depressions that are generally associated with
land and are weaker types of system, we find the con-
straints need to be chosen more carefully, particularly
if there is neighboring orography that can generate spu-
rious systems when reduction to pressure levels is per-
formed.

Figure 4 shows the resultant track ensemble for the
May–September period of 1989. The tracks have been
filtered to remove tracks that last less than 2 days and
travel less than 58 (about 500 km). Also, systems have
to attain a strength of at least 13.0 3 1025 s21 to be
retained. This removes the tracks for stationary and
short-lived systems leaving only the coherent longer-
lived system tracks, which are likely to be associated
with rain bearing systems.

Figure 4 shows several aspects of interest associated
with the Asian monsoon. There are several systems
generated in the Bay of Bengal that move northward
into Bangladesh. In this particular year there are also
several systems that propagate inland from the Bay of
Bengal over the Eastern Ghats. These are all systems
associated with the main phase of the monsoon. How-
ever, on the western side of India systems can often
be observed that develop in the southern Arabian sea
and propagate northward along the coast of India.
These are associated with the monsoon onset. In this
particular year one of these systems generated in situ
to the west of Goa can be seen meandering northward
to the Gujarat region and then out into the Arabian
sea.

In the western Pacific there are several very intense
systems associated with tropical storms (although other
fields would need to be examined to clearly identify
them as typhoons). There is clearly a contrast between
those systems that propagate predominantly in a zonal
direction, for example, those that penetrate into South-
east Asia (particularly North Vietnam) and those that

propagate predominately northward into the Pacific
storm track. It has been proposed that the remnants of
the tropical storms that frequent Southeast Asia may
cross the landmass and act as precursors to the storms
that develop in the Bay of Bengal (Saha et al. 1981).
However, in Fig. 4 this is not apparent, with all the
systems that propagate into Southeast Asia (Vietnam)
disappearing there, although in other years (not shown)
there is a hint of this behavior occurring. There may
be several reasons for this lack of apparent mobility
across the landmass. The systems probably become
very weak and may not even be closed systems, so
that the approach to identification used here will not
identify them, particularly with the relatively high
threshold used here. Even reducing the threshold to a
lower level may not identify them very well since, as
mentioned in the brief discussion above on tracking
African easterly waves using the relative vorticity data,
the field becomes very noisy at low intensity levels
with a propensity of even coherent systems to develop
multiple centers, making their tracking very difficult.
However, since they are synoptic-scale systems, filter-
ing of the data offers some hope that if this type of
motion occurs and the model is resolving it sufficiently,
they may still be identified and tracked. This will re-
quire further investigation.

These results can be compared with the observed
storms for this period, although this type of comparison
is a function of how well ERA represents the storms
and how well the tracking algorithm has performed.
The main storms for this period are shown in Fig. 5.

Overall, the main western Pacific storms appear to
have been picked out reasonably well, although there
are differences that may be due to either how well ERA
represents the storms or to mistakes by the tracking
algorithm. Another reason for differences is the way
the storms have been identified. In Fig. 4 simple criteria
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FIG. 7. Comparison using fixed constraints with adaptive constraints. (a) Nearest neighbor initialization with dmax 5 68; (b) after optimization
with dmax 5 68, cmax 5 1.0; (c) nearest neighbor initialization with dmax 5 38; (d) after optimization with dmax 5 38, cmax 5 0.1; (e) nearest
neighbor initialization with zonal dmax; (f ) after optimization with zonal dmax and adaptive track smoothness constraints.

←

FIG. 6. The monsoon tracks obtained from ERA that correspond to the observed storms. The colored dots indicate the strength of the systems
(vorticity) at each 6-h time step in units of 1025 s21.

based on the attained strength, displacement distance,
and lifetime are used as a filter after tracking, while
the storms in Fig. 5 are generally identified using al-
ternative objective criteria, such as wind speed, to-
gether with satellite and radar observations. A better
result may be possible by using different constraints
over land than over the ocean. The reason for this is
that there is more noise over land associated with the
orography, and reduction of the data to pressure levels,
than over the oceans.

The monsoon depressions obtained from ERA and
associated with the observed systems are shown in
more detail in Fig. 6. These correspond reasonably well
with the mature phase of the depressions when com-
pared with the observed storms. However, for 1989

only five main depressions were observed whereas we
have identified seven strong storms in the ERA data,
two of which (26–30 July, 18–22 August) do not appear
to have been classified as monsoon depressions.

It is clear from these results that in general the mo-
tion of tropical systems as modeled by the reanalyses
(and also observed) is not very smooth, in keeping
with the meandering nature of these systems, although
some of the lack of smoothness may be due to the way
observational data is assimilated into the model inte-
gration. However, the new algorithm has successfully
tracked the important systems even though there is a
significant amount of clutter, both orographically in-
duced as well as model induced.

One final comparison is made to highlight the ef-
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FIG. 8. As in Fig. 7f but for tracks with lifetimes less than 2 days
(eight time steps) removed.

fectiveness of using the adaptive constraints. This com-
parison takes the form of running the tracking code for
a set of fixed but lax constraints, a set of fixed but
strict constraints, and for the adaptive constraints. This
was done for the frame interval of 320–352 over India,
that is, the period and region where the monsoon de-
pression of 20–27 July occured. The results are shown
in Fig. 7, where the dots represent feature points iden-
tified in the frame interval. This clearly shows the de-
gree of clutter. The top row indicates the nearest neigh-
bor initialization for (a) the fixed upper-bound dis-
placement of 6.08 (a lax constraint), (c) the fixed upper-
bound displacement of 3.08 (a relatively strict
constraint), and (e) the zonal upper-bound displace-
ments discussed above. The lower row shows the result
of applying the optimization for (b) the lax constraint
using cmax 5 1.0, that is, unconstrained, for (d) the
strict constraints with cmax 5 0.1 and (f ) for the adap-
tive constraints. The superiority of the method with
adaptive constraints is more obvious if those systems
with lifetimes less than 2 days (eight time steps) are
removed. Figure 8 shows this for the results using the
adaptive constraints, where we see the monsoon de-
pression previously identified.

6. Conclusions

A new version of an existing tracking algorithm has
been described that implements regional upper-bound

displacements and adaptive track smoothness con-
straints. This provides a more flexible algorithm that
can be applied with confidence to a wide range of
applications. During the application of these tech-
niques to the ECMWF reanalyses it was found that
high-frequency variation over and around the orogra-
phy can lead to problems of association particularly
for the monsoon systems propagating along the mon-
soon trough close to the Tibetan Plateau as a result of
the reduction of the data on model levels to pressure
levels. One possibility of reducing this problem is to
apply a high-pass filter to the data; this will be con-
sidered in the future. This might also help with the
tracking of those weak systems that act as precursors
to the development of monsoon depressions. Alter-
natively, applying different constraints to oceanic and
continental regions may be useful.

The algorithm is currently being used to diagnose
the variability and nature of mobile systems in the
ECMWF reanalysis data for the Northern and Southern
Hemisphere storm tracks, tropical easterly waves, and
for the monsoon depressions as illustrated in the ex-
ample presented.

APPENDIX

A New Modified Greedy Exchange Algorithm

1. Initialize. Initialize tracks using nearest neighbor
search for all hk feature points (hk is the number of
feature points at time step k), k 5 1, . . . , n subject
to the regional upper-bound displacement constraint
dmax(Pk21 , Pk). Pad incomplete tracks with phantom
points so that all tracks span n frames.

2. Optimization.
a. Set forward and backward iteration flags to

TRUE.
b. Forward iteration.

1) Process all tracks forward in time once. If
D( , , ) . Dmax( , , ), thenk21 k k11 k21 k k11P P P P P Pi i i i i i

break track and create a new track at end of
track database for track piece from k 1 1 to
n. Thus all tracks and new tracks formed
from broken tracks are tested.

2) If forward iteration flag is TRUE do forward
exchange iteration. For each time step k 5
2, . . . , n 2 1:
(i) Initialize gmax 5 0.

(ii) Calculate the gain for all tracks i (ikgi,j

5 1, . . . , m 2 1) and j (j 5 i 1 1, . . . ,
m); provided d( , ) #k,k11 k,k11P Pi j

dmax( , ) and d( , ) #k,k11 k,k11 k,k11 k,k11P P P Pi j j i

dmax ( , ) as:k,k11 k,k11P Pj i

5k k21 k k11g D (P , P , P )i , j i i i

1 k21 k k11D (P , P , P )j j j

k21 k k112 D (P , P , P )i i j

2 k21 k k11D (P , P , P ).j j i (A1)
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Assign gmax 5 ; if . gmax andk kg gi,j i,j

D( , , ) # Dmax( , , )k21 k k11 k21 k k11P P P P P Pi i j i i j

and D( , , ) # Dmax( , ,k21 k k11 k21 kP P P P Pj j i j j

). Save track indices for currentk11Pi

.kgi,j

(iii) Swap points , on tracks i andk11 k11P Pi j

j corresponding to final gmax.
3) If a swap occurred during forward iteration

set backward iteration flag to TRUE and re-
turn to step 2.b.2), or else set forward iter-
ation flag to FALSE and check for comple-
tion of algorithm.

c. Backward iteration
1) Process all tracks backward in time once. If

D( , , ) . Dmax( , , ), thenk11 k k21 k11 k k21P P P P P Pi i i i i i

break track and create a new track at end of
track database for track piece from 1 to k 2 1.

2) If backward iteration flag is TRUE, do a back-
ward iteration. For each time step k 5 n 2
1, . . . , 2:
(i) As for forward iteration but now ex-

changing points , .k21 k21P Pi j

3) If a swap occured during backward iteration,
set forward iteration flag to TRUE and return
to step 2.c.2), or else set backward iteration
flag to FALSE and check for completion of
algorithm.

d. Termination check. If both forward and backward
iteration flags are FALSE, then end, otherwise
repeat iteration for the iteration flags that are
TRUE, starting at step 2.b for forward, and step
2.c for backward.

3. Final check. Perform a final backward and forward
check on the track smoothness.
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